分析 (1)先根据分式混合运算的法则把原式进行化简,再求出不等式组$\left\{\begin{array}{l}{-x-2≤3}\\{2x<12}\end{array}\right.$的解集,选取符合题意的x的值代入求值即可;
(2)先根据分式混合运算的法则把原式进行化简,再选取合适的a、b的值代入进行计算即可.
解答 解:(1)原式=$\frac{2x}{x-5}$•$\frac{(x+5)(x-5)}{2x}$
=x+5,
解不等式组$\left\{\begin{array}{l}{-x-2≤3}\\{2x<12}\end{array}\right.$得,-5≤x<6,
当x=1时,原式=6.
(2)原式=$\frac{a-b}{a}$÷$\frac{{a}^{2}-2ab+{b}^{2}}{a}$
=$\frac{a-b}{a}$•$\frac{a}{(a-b)^{2}}$
=$\frac{1}{a-b}$,
当a=2,b=1时,原式=$\frac{1}{2-1}$=1.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4cm | B. | 6cm | C. | 10cm | D. | 14cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com