精英家教网 > 初中数学 > 题目详情
如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.
(1)求证:⊙D与AC相切;
(2)若AC=5,BC=3,试求AE的长.
分析:(1)过D作DF⊥AC于F,利用角平分线的性质定理可得BD=FD即可证明:⊙D与AC相切;
(2)在直角三角形ABC中由勾股定理可求出AB的长,设圆的半径为x,利用切线长定理可求出CF=BC=3,所以AF=2,AD=AB-x,利用勾股定理建立方程求出x,进而求出AE的长.
解答:(1)证明:过D作DF⊥AC于F,
∵∠B=90°,
∴AB⊥BC,
∵CD平分∠ACB交AB于点D,
∴BD=DF,
∴⊙D与AC相切;

(2)解:设圆的半径为x,
∵∠B=90°,BC=3,AC=5,
∴AB=
 AC2 -BC2
=4,
∵AC,BC,是圆的切线,
∴BC=CF=3,
∴AF=AB-CF=2,
∵AB=4,
∴AD=AB-BD=4-x,
在Rt△AFD中,(4-x)2=x2+22
解得:x=
3
2

∴AE=4-3=1.
点评:本题考查了圆的切线的判定、角平分线的性质、切线长定理以及勾股定理的运用,解题的关键是构造直角三角形,利用勾股定理列方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图△ABC中,∠C=90°,AC=6,AB=10,D是BC边的中点,以AD上一点O为圆心的圆与AB,BC都相切,则⊙O的半径为(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图△ABC中,DE∥BC,CD、BE交于点F,若DF=1,CF=3,AD=2,则线段BD的长等于
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠A=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为
69°
69°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,∠ABC=20°,外角∠ABF的平分线与CA边的延长线交于点D,外角∠EAC的平分线交BC边的延长线于点H,若∠BDA=∠DAB,则∠AHC=(  )度.

查看答案和解析>>

同步练习册答案