精英家教网 > 初中数学 > 题目详情
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是(  )
A.①②B.②③C.①②④D.②③④
C.

试题分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(-5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>-1时,y随x的增大而增大即可判断④.
∵二次函数的图象的开口向上,
∴a>0,
∵二次函数的图象y轴的交点在y轴的负半轴上,
∴c<0,
∵二次函数图象的对称轴是直线x=-1,

∴b=2a>0,
∴abc<0,∴①正确;
2a-b=2a-2a=0,∴②正确;
∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).
∴与x轴的另一个交点的坐标是(1,0),
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;
∵二次函数y=ax2+bx+c图象的对称轴为x=-1,
∴点(-5,y1)关于对称轴的对称点的坐标是(3,y1),
根据当x>-1时,y随x的增大而增大,
<3,
∴y2<y1,∴④正确;
故选C.
考点: 二次函数图象与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,有一块铁片下脚料,其外轮廓中的曲线是抛物线的一部分,要裁出一个等边三角形,使其一个顶点与抛物线的顶点重合,另外两个顶点在抛物线上,求这个等边三角形的边长(结果精确到).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=3x2向右平移2个单位,则新抛物线的解析式是
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元)
50
53
56
59
62
65
月销售量(千克)
420
360
300
240
180
120
该商品以每千克50元为售价,在此基础上设每千克的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).

(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标;
(3)画出这条抛物线大致图象;
(4)根据图象回答:
①当x取什么值时,y>0 ?
②当x取什么值时,y的值随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果将抛物线向左平移2个单位,那么所得抛物线的表达式为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线的对称轴为直线,点A,B均在抛物线上,且AB与x轴平行,若点A的坐标为,则点B的坐标为___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的对称轴是(   )
A.直线x=-1B.直线x="1" C.直线x=2D.直线x=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数,当时,自变量的取值范围是        

查看答案和解析>>

同步练习册答案