精英家教网 > 初中数学 > 题目详情
(2012•白下区二模)一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的底面半径是
1
1
分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.
解答:解:∵圆锥的侧面展开图是半径为2的半圆,
∴圆锥的底面周长是:2π;
设圆锥的底面半径是r,则2πr=2π.
解得:r=1.
故答案是:1.
点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•白下区二模)
(-3)2
的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区二模)下列说法中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区二模)已知两圆的半径分别是2cm、3cm.当两圆相交时,两圆的圆心距可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区二模)在平面直角坐标系中,将点P(2,1)绕坐标原点逆时针旋转90°得到点P′,则点P′的坐标是
(-1,2)
(-1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区二模)如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=3cm,DC=15cm,BC=24cm.点P从A点出发,沿A→D→C方向以1cm/s的速度匀速运动,同时点Q从C点出发,沿C→B方向以2cm/s的速度匀速运动.当其中一点到达终点时,另一点也随之停止运动.
(1)连接AP、AQ、PQ,设△APQ的面积为S(cm2),点P运动的时间为t(s),求S与t的函数关系式;
(2)当t为何值时,△APQ的面积最大,最大值是多少?
(3)△APQ能成为直角三角形吗?如果能,直接写出t的值;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案