精英家教网 > 初中数学 > 题目详情

【题目】如图,已知PA、PB⊙O的切线,A、B分别为切点,∠OAB=30°.

(1)∠APB=_____

(2)当OA=2时,AP=_____

【答案】60° 2

【解析】

(1)根据四边形的内角和为360°,根据切线的性质可知:∠OAP=OBP=90°,求出∠AOB的度数,可将∠APB的度数求出;

(2)作辅助线,连接OP,在RtOAP中,利用三角函数,即可求出AP的长

(1)∵在ABO中,OA=OB,OAB=30°,

∴∠AOB=180°﹣2×30°=120°,

PA、PB是⊙O的切线,

OAPA,OBPB,即∠OAP=OBP=90°,

∴在四边形OAPB中,

APB=360°﹣120°﹣90°﹣90°=60°,

故答案为:60°.

(2)如图,连接OP;

PA、PB是⊙O的切线,

PO平分∠APB,即∠APO=APB=30°,

又∵在RtOAP中,OA=3,APO=30°,

AP=== 2

故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是定长线段,圆心OAB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则yx所满足的函数关系式为(  )

A. 正比例函数y=kx(k为常数,k≠0,x>0)

B. 一次函数y=kx+b(k,b为常数,kb≠0,x>0)

C. 反比例函数y=(k为常数,k≠0,x>0)

D. 二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,BCE=71°,CE=54cm.

(1)求单车车座E到地面的高度;(结果精确到1cm)

(2)根据经验,当车座ECB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)

(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何模型:

条件:如图1,A、B是直线同旁的两个定点.

问题:在直线上确定一点P,使PA+PB的值最小.

方法:作点A关于直线的对称点A′,连接A′B于点P,则PA+PB=A′B的值最小(不必证明).

模型应用:

(1)如图2,已知平面直角坐标系中两定点A(0,-1),B(2,-1),Px轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______;

(2)如图3,正方形ABCD的边长为2,EAB的中点,PAC上一动点.由正方形对称性可知,BD关于直线AC对称,连接BD,则PB+PE的最小值是______;

(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为

(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E,F分别在BC,CD上, ΔAEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中结论正确的个数为( )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC,BD交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为lcm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为lcm/s,EFBD,且与AD,BD,CD分别交于点E,Q.F,当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:

(1)求菱形ABCD的面积;

(2)当t=1时,求QF长;

(3)是否存在某一时刻t,使四边形APFD是平行四边形?若存在,求出t值,若不存在,请说明理由;

(4)设DEF的面积为s(cm2),试用含t的代数式表示S,并求t为何值时,DEF的面积与BPC的面积相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的角平分线,分别是的高,连接.下列结论:①垂直平分;②垂直平分;③平分;④当时,,其中不正确的结论的个数为(

A.B.C.D.

查看答案和解析>>

同步练习册答案