精英家教网 > 初中数学 > 题目详情
12.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是$\frac{1}{3}$,则黄球的个数为8.

分析 设黄球的个数为x个,根据概率公式得到$\frac{x}{16+x}$=$\frac{1}{3}$,然后解方程即可.

解答 解:设黄球的个数为x个,
根据题意得:$\frac{x}{16+x}$=$\frac{1}{3}$,
解得x=8,
经检验:x=8是原分式方程的解,
故答案为8.

点评 本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.x的$\frac{1}{3}$与2的差不小于5,用不等式表示为$\frac{1}{3}x-2≥5$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.问题背景
已知在△ABC中,AB边上的动点D由A向B运动(与A、B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.
(1)初步尝试
如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.
小王同学发现可以由以下两种思路解决问题:
思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;
思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);
(2)类比探究
如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是$\sqrt{3}$:1,求$\frac{AC}{HF}$的值;
(3)延伸拓展
如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记$\frac{BC}{AB}$=m,且点D,E的运动速度相等,试用含m的代数式表示$\frac{AC}{HF}$(直接写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程:
(1)2(x-3)=3x(3-x);                   
(2)x2-4x-2=0(用配方法);
(3)$\frac{1}{x-2}=\frac{1-x}{2-x}-3$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知关于x的一元二次方程mx2+2mx+2-m=0有两个相等的实数根,则m的值是(  )
A.-2B.1C.1或0D.1或-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程(组):
(1)2-$\frac{2x+1}{3}$=$\frac{1+x}{2}$    
(2)$\left\{\begin{array}{l}{3x-5y=3}\\{\frac{x}{2}-\frac{y}{3}=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算正确的是(  )
A.$\sqrt{2}$•$\sqrt{\frac{1}{2}}$=1B.$\root{3}{4}$-$\root{3}{3}$=1C.$\sqrt{6}$÷$\sqrt{3}$=2D.$\sqrt{4}$=±2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是48.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若$\sqrt{{x}^{2}-1}$+|y+1|=0,则x2016+y2017=0.

查看答案和解析>>

同步练习册答案