精英家教网 > 初中数学 > 题目详情
如图,点P在双曲线y=
k
x
(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF-OE=6,则k的值是______.
如图,过P点作x轴、y轴的垂线,垂足为A、B,
∵⊙P与两坐标轴都相切,∴PA=PB,四边形OAPB为正方形,
∵∠APB=∠EPF=90°,∴∠BPE=∠APF,
∴Rt△BPE≌Rt△APF,∴BE=AF,
∵OF-OE=6,
∴(OA+AF)-(BE-OB)=6,
即2OA=6,解得OA=3,
∴k=OA×PA=3×3=9.
故答案为:9.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线经过A(1,0),B(0,1)两点,点P是双曲线y=
1
2x
(x>0)上任意一点,PM⊥x轴,PN⊥y轴,垂足分别为M,N.PM与直线AB交于点E,PN的延长线与直线AB交于点F.
(1)求证:AF•BE=1;
(2)若平行于AB的直线与双曲线只有一个公共点,求公共点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知圆柱的侧面积是6πcm2,若圆柱的底面半径为x(cm),高为ycm).
(1)写出y关于x的函数解析式;
(2)完成下列表格:

(3)在所给的平面直角坐标系中画出y关于x的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-x+4与x轴交于点B,与y轴交于点C,交双曲线y=
k
x
(x<0)
于点N,连ON,且S△OBN=10.

(1)求双曲线的解析式;
(2)如图2,平移直线BC交双曲线于点P,交直线y=-2于点Q,∠FCB=∠QBC,PC=QB求平移后的直线PQ的解析式;
(3)如图3,已知A(2,0)点M为双曲线上一点,CE⊥OM于M,AF⊥OM于F,设梯形CEFA的面积为S,且AF•EF=
2
3
S,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数y=-
4
x
,当x<2时,y的取值范围为______;当y≥1时,x的取值范围为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△OAB的边OB在x轴的负半轴上,双曲线y=
k
x
过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为(  )
A.y=
3
x
B.y=-
3
x
C.y=
2
3
x
D.y=-
2
3
x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点P是反比例函数y=
k1
x
(k1<0,x<0)
图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数y=
k2
x
(0<k2<|k1|)
图象于E、F两点.
(1)用含k1、k2的式子表示以下图形面积:
①四边形PAOB;②三角形OFB;③四边形PEOF;
(2)若P点坐标为(-4,3),且PB:BF=2:1,分别求出k1、k2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知点A在反比例函数y=
4
x
的图象上,点B在反比例函数y=
k
x
(k≠0)
的图象上,
ABx轴,分别过点A、B作x轴作垂线,垂足分别为C、D,若OC=
1
3
OD
,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则点E的横坐标是______.

查看答案和解析>>

同步练习册答案