精英家教网 > 初中数学 > 题目详情
(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为
15.3
15.3
m(精确到0.1m).(参考数据:
2
≈1.41,
3
,1.73)
分析:在Rt△ACD中求出AC,在Rt△BCD中求出BC,继而可得出AB.
解答:解:在Rt△ACD中,CD=21m,∠DAC=30°,
则AC=
3
CD≈36.3m;
在Rt△BCD中,∠DBC=45°,
则BC=CD=21m,
故AB=AC-BC=15.3m.
故答案为:15.3.
点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,理解俯角的定义,能利用三角函数表示线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大连)如图,抛物线y=x2+bx+
9
2
与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为
y=x2-
9
2
x+
9
2
y=x2-
9
2
x+
9
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大连)如图,?ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.
(1)求证:DA=DC;
(2)⊙O的半径为3,DC=4,求CG的长.

查看答案和解析>>

同步练习册答案