分析 (1)由四边形ABCD为矩形,于是得到∠A=∠D=90°,根据垂直的定义得到∠AEF+∠DEC=90°,于是得到∠F=∠DEC,即可得到结论;
(2)由四边形ABCD为矩形,得到DC=AB=2,求出ED=AD-AE=4,根据相似三角形的性质得到$\frac{AF}{ED}=\frac{AE}{DC}$,代入数据即可得到结论.
解答 (1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∵CE⊥EF,
∴∠AEF+∠DEC=90°,
又∵∠F+∠AEF=90°,
∴∠F=∠DEC,
∴△AEF∽△DCE;
(2)解:∵四边形ABCD为矩形,
∴DC=AB=2,
∵AE=3,AD=7,
∴ED=AD-AE=4,
∵△AEF∽△DCE,
∴$\frac{AF}{ED}=\frac{AE}{DC}$,
∴$\frac{AF}{4}=\frac{3}{2}$,
∴AF=6.
点评 本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10海里 | B. | 10sin50°海里 | C. | 10cos50°海里 | D. | 10tan50°海里 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x(15-x) | B. | x(30-x) | C. | x(30-2x) | D. | x(15+x) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com