精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,并用相关的思想方法解决问题.

例:若多项式分解因式的结果中有因式,求实数的值.

解:设

,则

是方程的解

所以,即,所以

解决问题:(1)若多项式分解因式的结果中有因式,求实数的值;

2)若多项式分解因式的结果中有因式

①求出的值;

②直接写出方程的解.

【答案】1;(2)①;②

【解析】

1)按照材料中的思路,可得是方程的解,代入求出q即可;

2)①按照材料中的思路,可得是方程的解,代入得出关于mn的二元一次方程组,解方程组即可得出答案;

②代入mn的值,对进行因式分解,进而求出方程的解.

解:(1)设

,则

所以是方程的解,

所以,即

所以

2)①设

,则

,由

是方程的解,

所以,整理得:

解得:

②∵m5n2

,

时,

时,得

∴方程的解为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.

(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;

(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD,过点DDE⊥AB于点E,点F在边CD上,DFBE,连接AFBF.

1)求证:四边形BFDE是矩形;

2)若CF3BF4DF5,求证:AF平分∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知C是线段AB上的一点,分别以ACBC为边在线段AB同侧作正方形ACDE和正方形CBGF,点FCD上,联结AFBDBDFG交于点M,点N是边AC上的一点,联结ENAF 与点H

1)求证:AF=BD

2)如果,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】假设某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为90%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,6小时车库恰好停满;如果开放3个进口和2个出口,3小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,因为车库改造,只能开放1个进口和1个出口,则从早晨7点开始经过______小时车库恰好停满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接2022年冬奥会,鼓励更多的大学生参与到志愿服务中,甲、乙两所学校组织了志愿服务团队选拔活动,经过初选,两所学校各有300名学生进入综合素质展示环节,为了了解这些学生的整体情况,从两校进入综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.

a.甲学校学生成绩的频数分布直方图如图(数据分成6组:).

b.甲学校学生成绩在这一组是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:

平均数

中位数

众数

优秀率

83.3

84

78

46%

根据以上信息,回答下列问题:

1)甲学校学生,乙学校学生的综合素质展示成绩同为82分,这两人在本校学生中综合素质展示排名更靠前的是________(填“”或“”);

2)根据上述信息,推断________学校综合素质展示的水平更高,理由为:__________________________

(至少从两个不同的角度说明推断的合理性).

3)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,预估甲学校分数至少达到________分的学生才可以入选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);当﹣1<x<3时,y0,其中正确的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点EBC边的中点,动点MCD边上运动,以EM为折痕将△CEM折叠得到△PEM,连接PA,若AB=4,∠BAD=60°,则PA的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=﹣的图象与直线ykxk0)相交于点AB,以AB为底作等腰三角形,使∠ACB120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为__

查看答案和解析>>

同步练习册答案