精英家教网 > 初中数学 > 题目详情

如图所示,为求l的长,先量得hn的长.

(1)用含hn的式子表示l

(2)当h=60 mmn=20 mm,求l的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2007•海淀区一模)阅读:
如图,在空间中,与定点的距离等于定长的点的集合叫做球面.定点叫做球心,定长叫做半径.球面被经过球心的平面截得的圆叫做大圆.
探究1:当我们把半径为11cm的足球看成一个球时,假设有一根无弹性的细线恰好能沿足球的大圆紧紧缠绕一周,将细线的长度增加1米后,细线仍以圆形呈现,且圆心为足球的球心.若将细线与足球表面的间隙记为h1(间隙如图所示),求h1的长;(π取3.14,结果精确到1cm)
探究2:将探究1中的足球分别换成乒乓球和地球,其他条件都不改变.设乒乓球半径为r,细线与乒乓球表面的间隙为h2;地球的半径为R,细线与地球表面的间隙为h3,试比较h2与h3大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读:
如图,在空间中,与定点的距离等于定长的点的集合叫做球面.定点叫做球心,定长叫做半径.球面被经过球心的平面截得的圆叫做大圆.
探究1:当我们把半径为11cm的足球看成一个球时,假设有一根无弹性的细线恰好能沿足球的大圆紧紧缠绕一周,将细线的长度增加1米后,细线仍以圆形呈现,且圆心为足球的球心.若将细线与足球表面的间隙记为h1(间隙如图所示),求h1的长;(π取3.14,结果精确到1cm)
探究2:将探究1中的足球分别换成乒乓球和地球,其他条件都不改变.设乒乓球半径为r,细线与乒乓球表面的间隙为h2;地球的半径为R,细线与地球表面的间隙为h3,试比较h2与h3大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:北京期中题 题型:解答题

阅读:
如图,在空间中,与定点的距离等于定长的点的集合叫做球面,定点叫做球心,定长叫做半径,球面被经过球心的平面截得的圆叫做大圆。

探究1:当我们把半径为11cm的足球看成一个球时,假设有一根无弹性的细线恰好能沿足球的大圆紧紧缠绕一周,将细线的长度增加1米后,细线仍以圆形呈现,且圆心为足球的球心,若将细线与足球表面的间隙记为h1(间隙如图所示),求h1的长;(π取3.14,结果精确到1cm)
探究2:将探究1中的足球分别换成乒乓球和地球,其他条件都不改变,设乒乓球的半径为r,细线与乒乓球表面的间隙为h2;地球的半径为R,细线与地球表面的间隙为h3,试比较h2与h3的大小,并说明理由。

查看答案和解析>>

科目:初中数学 来源:2007年北京市海淀区中考数学一模试卷(解析版) 题型:解答题

阅读:
如图,在空间中,与定点的距离等于定长的点的集合叫做球面.定点叫做球心,定长叫做半径.球面被经过球心的平面截得的圆叫做大圆.
探究1:当我们把半径为11cm的足球看成一个球时,假设有一根无弹性的细线恰好能沿足球的大圆紧紧缠绕一周,将细线的长度增加1米后,细线仍以圆形呈现,且圆心为足球的球心.若将细线与足球表面的间隙记为h1(间隙如图所示),求h1的长;(π取3.14,结果精确到1cm)
探究2:将探究1中的足球分别换成乒乓球和地球,其他条件都不改变.设乒乓球半径为r,细线与乒乓球表面的间隙为h2;地球的半径为R,细线与地球表面的间隙为h3,试比较h2与h3大小,并说明理由.

查看答案和解析>>

同步练习册答案