精英家教网 > 初中数学 > 题目详情
有边长为单位1的小正方形组成的8×8的网格中,平面直角坐标系和四边形ABCD的位置如图所示.
(1)将四边形ABCD沿y轴翻折,得到四边形A1B1C1D1,请你在网格中画出四边形A1B1C1D1
(2)把四边形A1B1C1D1绕点A顺时针旋转90°得到四边形A2B2C2D2,请你在网格中画出四边形A2B2C2D2,并直接写出点A2的坐标为
(1,1)
(1,1)

(3)在(2)中,四边形A2B2C2D2与四边形ABCD关于点
(1,0)
(1,0)
  成中心对称(直接写出对称中心的坐标).
分析:(1)根据网格结构找出点A、B、C、D关于y轴的对称点A1、B1、C1、D1的位置,然后顺次连接即可;
(2)根据网格结构找出点A1、B1、C1、D1绕点A顺时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标;
(3)观察图形,根据中心对称的性质解答即可.
解答:解:(1)如图所示,四边形A1B1C1D1即为四边形ABCD沿y轴翻折的图形;

(2)如图所示,四边形A2B2C2D2即为四边形A1B1C1D1绕点A顺时针旋转90°得到四边形,
点A2的坐标为(1,1);

(3)由图可知,四边形A2B2C2D2与四边形ABCD关于点(1,0)成中心对称.
故答案为:(2)(1,1);(3)(1,0).
点评:本题考查了利用旋转变换作图,轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.
(1)从点C按“平移量”{
-2
-2
-1
-1
}可平移到点B;
(2)若点B依次按“平移量”{4,-3}、{-2,1}平移至点D,
①请在图中标出点D;(用黑色水笔在答题卡上作出点D)
②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?
③观察点D的位置,其实点B也可按“平移量”{
2
2
-2
-2
}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{-5a,b}、{a,-5b}平移至点F,则相当于点E按“平移量”{
-2a
-2a
-b
-b
}直接平移至点F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.
(1)从点C按“平移量”{______,______}可平移到点B;
(2)若点B依次按“平移量”{4,-3}、{-2,1}平移至点D,
①请在图中标出点D;(用黑色水笔在答题卡上作出点D)
②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?
③观察点D的位置,其实点B也可按“平移量”{______,______}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{-5a,b}、{a,-5b}平移至点F,则相当于点E按“平移量”{______,______}直接平移至点F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省合肥市一中高一自主招生考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

同步练习册答案