精英家教网 > 初中数学 > 题目详情
1.若二次函数y=ax2-2ax-1,当x分别取x1.x2两个不同的值时,函数值相等,则当x取x1+x2时,函数值为-1.

分析 将x1、x2两个不同的值代入二次函数关系式y=ax2-2ax-1,求得关于x1+x2的关系式,并求值.

解答 解:根据题意,得:ax12-2ax1-1=ax22-2ax2-1,
∴a(x1+x2-2)(x1-x2)=0,
∵a≠0,
∴x1+x2-2=0或x1-x2=0,
∴x1+x2=2.
则当x=x1+x2=2时,y=4a-4a-1=-1,
故答案为:-1.

点评 本题考查了二次函数图象上的坐标特征.掌握函数图象上的点的坐标均满足该函数的关系式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,正方形ABCD的面积为4,E,F分别是AB、CD上的点,AF与ED相交于点G,BF与EC相交于点H,求四边形EHFG面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<3>=4,<-2.5>=-2.根据上述规定,解决下列问题:
(1)[-4.5]=-5,<3.01>=4;
(2)若x为整数,且[x]+<x>=2017,求x的值;
(3)若x、y满足方程组$\left\{\begin{array}{l}{3[x]+2<y>=3}\\{3[x]-<y>=-6}\end{array}\right.$,求x、y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,4),M是第三象限内$\widehat{OB}$上一点,∠BMO=120°,则⊙C的半径长为(  )
A.5B.4C.3D.4$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,四边形ABCD中,AD∥BC,AD=5cm,AB=$\sqrt{46}$cm,BC=13cm,DC=$\sqrt{30}$cm.在BC上有动点P、Q,P从B到C,以2cm/s的速度运动,Q从C到B,以1cm/s的速度同时开始运动,当P到达终点时,Q也立刻停止,设运动的时间为t(s).
(1)t的取值范围是0≤t≤$\frac{13}{2}$;
(2)如果PQ的长为y(cm),求y关于t的函数解析式;
(3)求当t为多少时,以A、D、P、Q为顶点的凸四边形是平行四边形;
(4)以A、D、P、Q为顶点的凸四边形是否为菱形?如果是,求出相应的t,如果不是,说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.当k取何值时,若代数式$\frac{3k-2}{5}$的值不大于代数式$\frac{2k+1}{3}$-1的值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).
(1)平行四边形OABC的面积是16$\sqrt{3}$cm2
(2)当t=6s时,直线PQ平分平行四边形OABC的面积;
(3)求S关于t的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算:2a2-a3+(-a32=2a2-a3+a6

查看答案和解析>>

同步练习册答案