精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,BC=10,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).
(1)当MN∥AB时,求t的值;
(2)试探究:t为何值时,△MNC为等腰三角形.
分析:(1)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;
(1)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
解答:解:(1)如图1,过D作DG∥AB交BC于G点.则四边形ADGB是平行四边形.
∵MN∥AB,
∴MN∥DG,
∴BG=AD=3.
∴GC=10-3=7.
由题意知,当M、N运动到t秒时,CN=t,CM=10-2t.
∵DG∥MN,
∴△MNC∽△GDC.
CN
CD
=
CM
CG

t
5
=
10-2t
7

解得,t=
50
17


(2)分三种情况讨论:
①当NC=MC时,如图2,即t=10-2t,
解得:t=
10
3

②当MN=NC时,如图3,过N作NE⊥MC于E.
由等腰三角形三线合一性质得
EC=
1
2
MC=
1
2
(10-2t)=5-t.
在Rt△CEN中,cosC=
EC
NC
=
5-t
t

又在Rt△DHC中,cosC=
CH
CD
=
3
5

5-t
t
=
3
5

解得:t=
25
8

③当MC=MN时,如图4,过M作MF⊥CN于F点,FC=
1
2
NC=
1
2
t.
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC,
FC
HC
=
MC
DC

1
2
t
3
=
10-2t
5

解得:t=
60
17

综上所述,当t=
10
3
、t=
25
8
或t=
60
17
时,△MNC为等腰三角形.
点评:此题主要考查了四边形综合应用以及相似三角形的判定与性质和锐角三角函数等知识,注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案