精英家教网 > 初中数学 > 题目详情
(2013•平顶山二模)已知正比例函数y=2x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为
1
2

(1)求反比例函数的解析式;
(2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为1,在x轴上求一点M,使MA+MB最小.
分析:反比例函数图象上任一点向横轴和纵轴做垂线,垂线段和横纵轴所围成矩形的面积即为k的绝对值,由图象分布的象限可求得K的值,由解析式可求得点的坐标,由点的坐标用待定系数法可求得函数解析式.
(1)设A点坐标为(x,y)则OP=x,PA=y,根据△OAP的面积为
1
2
可得xy=1,再由点A在反比例函数图象上,可知k=xy=1,即可得到反比例函数关系式;
(2)作A关于x轴的对称点A′,连接A′B,交x轴于M点,这时MA+MB最小.首先求出B点坐标,再利用函数关系式算出A、A′的坐标,再利用A、B两点坐标利用待定系数法算出直线AB的函数解析式,最后根据函数解析式求出M点坐标即可.
解答:(1)设A点坐标为(x,y)由题意可知OP=x,PA=y
∴S△AOP=
1
2
xy=
1
2

∴xy=1,
∵点A在反比例函数图象上,
∴k=xy=1,
∴y=
1
x


(2)作A关于x轴的对称点A′,连接A′B,交x轴于M点,这时MA+MB最小.
∵点B的横坐标是1,
∴点B的纵坐标是y=
1
1
=1,
∴B(1,1),
∵A点是正比例函数y=2x的图象与反比例函数y=
1
x
的图象交点,
∴2x=
1
x

解得x=±
2
2

∵点A在第一象限,
∴A点的横坐标是
2
2

∴点A的坐标(
2
2
2
),
∴点A关于x轴对称的点A′的坐标是(
2
2
,-
2
),
设直线A′B的解析式为y=kx+b,把点A、B的坐标代入得:
k+b=1
2
2
k+b=-
2

解之得
k=4+3
2
b=-3-3
2

∴直线AB的解析式为y=(4+3
2
)x-3-3
2

当y=0时,x=
3+3
2
4+3
2
=
6-3
2
2

故M(
6-3
2
2
,0).
点评:此题主要考查了反比例函数与一次函数的图象和性质,轴对称的性质,待定系数法求解析式,解决此题的难点是确定M点的位置,在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•平顶山二模)使式子
x+2
有意义的x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平顶山二模)按下面程序计算:输入x=-3,则输出的答案是
-12
-12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平顶山二模)下列各数中是负数的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平顶山二模)如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(  )

查看答案和解析>>

同步练习册答案