精英家教网 > 初中数学 > 题目详情
今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。
(1)小华的问题解答:应定价4元/个,才可获得800元的利润,详见解析;(2)小明的问题解答:800元不是最大利润.当定价为4.8元/个时,每天利润最大,详见解析.

试题分析:(1)小华的问题要用一元二次方程来解决,解答的关键是弄清:设实现每天800元利润的定价为x元/个时,每一个粽子的利润为(x-2)元,一共能卖(500-×10)个粽子,根据题意列方程得:(x-2)(500-×10)=800,解得x1=4,x2=6,还应根据实际问题确定两个值是否都满足条件,本题因物价局规定,售价不能超过进价的240%,即2×240%=4.8(元),所以x2=6不合题意,舍去,得x=4;
(2)小明的问题要利用二次函数的增减性来解决,解答时要注意自变量x的取值范围:x≤4.8 .
试题解析:(1)小华的问题解答:
解:设实现每天800元利润的定价为x元/个,根据题意,得
(x-2)(500-×10)="800" .
整理得:x2-10x+24=0.
解之得:x1=4,x2=6.
∵物价局规定,售价不能超过进价的240%,即2×240%=4.8(元).
∴x2=6不合题意,舍去,得x=4.
答:应定价4元/个,才可获得800元的利润.
(2)小明问题的解决:
解:设每天利润为W元,定价为x元/个,得
W=(x-2)(500-×10)
=-100x2+1000x-1600
=-100(x-5)2+900.
∵x≤5时W随x的增大而增大,且x≤4.8,
∴当x="4.8" 时,W最大,
W最大=-100×(4.8-5)2+900=896>800 .
故800元不是最大利润.当定价为4.8元/个时,每天利润最大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一条抛物线(m<0)与x轴相交于A、B两点(点A在点B的左侧).若点M、N的坐标分别为(0,—2)、(4,0),抛物线与直线MN始终有交点,线段AB的长度的最小值为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).

(1)b=    ,点B的横坐标为    (上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为
(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有    个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)

(1)填空:用含t的代数式表示点A的坐标及k的值:A     ,k=     
(2)随着三角板的滑动,当a=时:
①请你验证:抛物线的顶点在函数的图象上;
②当三角板滑至点E为AB的中点时,求t的值;
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若关于x函数的图像与x轴有唯一公共点,则=__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于轴对称.轴,,最低点轴上,高,则右轮廓线所在抛物线的函数解析式为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是【   】
A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b2<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.

(1)当t=     时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的
△APD与△PCQ重叠部分的面积.

查看答案和解析>>

同步练习册答案