精英家教网 > 初中数学 > 题目详情
如图,△ABC是⊙O的内接三角形,点D是的中点,已知∠AOB=98°,∠COB=120°,则∠ABD的度数是    度.
【答案】分析:根据周角为360°,可求出∠AOC的度数,由圆周角定理可求出∠ABC的度数,关键是求∠CBD的度数;由于D是弧BC的中点,根据圆周角定理知∠DBC=∠BAC,而∠BAC的度数可由同弧所对的圆心角∠BOC的度数求得,由此得解.
解答:解:∵∠AOB=98°,∠COB=120°,
∴∠AOC=360°-∠AOB-∠COB=142°;
∴∠ABC=71°;
∵D是的中点,
∴∠CBD=∠BAC;
又∵∠BAC=∠COB=60°,
∴∠CBD=30°;
∴∠ABD=∠ABC+∠CBD=101°.
点评:此题主要考查了圆心角、圆周角的应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是锐角三角形,以BC为直径作⊙O,AD是⊙O的切线,从AB上一点E作AB的垂线交AC的延长线于F,若
AB
AF
=
AE
AC

求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是
①②③
①②③
.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是BC边的中点,点E在AC的延长线上,且∠CDE=30°.若AD=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,则∠ABD=
120
120
度.

查看答案和解析>>

同步练习册答案