分析 (1)根据负整数整数幂、零指数幂和特殊角的三角函数值计算;
(2)分别解两个不等式得到x≤4和x>2,再利用大于小的小于大的取中间得到不等式组的解集,然后确定不等式组的整数解.
解答 解:(1)原式=4-6×$\frac{1}{2}$-1+$\sqrt{2}$+$\sqrt{3}$-$\sqrt{2}$
=$\sqrt{3}$;
(2)$\left\{\begin{array}{l}{3x+2≤2(x+3)①}\\{\frac{2x-1}{3}>\frac{x}{2}②}\end{array}\right.$,
解①得x≤4,
解②得x>2,
所以不等式组的解集为2<x≤4,
所以不等式组的整数解为x=3 或x=4.
点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解一元一次不等式.
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $y=\frac{2x+5}{7}$ | B. | $y=\frac{2x-5}{7}$ | C. | $x=\frac{5+7y}{2}$ | D. | $x=\frac{5-7y}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com