精英家教网 > 初中数学 > 题目详情

【题目】在同一平面直角坐标系中反比例函数yb0)与二次函数yax2+bxa0)的图象大致是(  )

A. B.

C. D.

【答案】D

【解析】

直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.

A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于轴的右侧,则a,b异号,即b<0.所以反比例函数y的图象位于第二、四象限,故本选项错误;

B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于轴的左侧,则a,b同号,即b>0.所以反比例函数y的图象位于第一、三象限,故本选项错误;

C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于轴的右侧,则a,b异号,即b>0.所以反比例函数y的图象位于第一、三象限,故本选项错误;

D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于轴的右侧,则a,b异号,即b>0.所以反比例函数y的图象位于第一、三象限,故本选项正确;

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点Ax轴的垂线,垂足为M,△AOM面积为1.

(1)求反比例函数的解析式;

(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+4x-

(1)用配方法把该函数解析式化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;

(2)求函数图象与x轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程左右两边同时加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC = 90°,BC = 1,AC =

1以点B为旋转中心,将ABC沿逆时针方向旋转90°得到ABC′,请画出变换后的图形;

2求点A和点A′之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:

类别

次数

购买A商品数量(件)

购买B商品数量(件)

消费金额(元)

第一次

4

5

320

第二次

2

6

300

第三次

5

7

258

解答下列问题:

(1)第  次购买有折扣;

(2)求A、B两种商品的原价;

(3)若购买A、B两种商品的折扣数相同,求折扣数;

(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-2(x-1)(xm+3)(m为常数),则下列结论正确的有(  )

抛物线开口向下; ②抛物线与y轴交点坐标为(0,-2m+6);

x<1yx增大而增大;④抛物线的顶点坐标为).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知AB是⊙O的直径,点D是线段AB延长线上的一个动点,直线DF垂直于射线AB于点D,当直线DF绕点D逆时针旋转时,与⊙O交于点C,且运动过程中,保持CDOA

1)当直线DF与⊙O相切于点C时,求旋转角的度数;

2)当直线DF与半圆O相交于点C时(如图②),设另一交点为E,连接AEOC,若AEOC

AEOD的大小有什么关系?说明理由.

②求此时旋转角的度数.

查看答案和解析>>

同步练习册答案