精英家教网 > 初中数学 > 题目详情
(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.
分析:(1)连接AE,根据E为弧AD中点得出∠4=∠ABE,根据线段垂直平分线性质得出CG=BC,推出∠1=∠2,推出∠3+∠4=90°,根据∠1=∠3推出∠2+∠EBA=90°,根据切线判定推出即可;
(2)求出AC长,求出AG=4,证△EAG∽△EBA推出
AE
BE
=
1
2
,设AE=x,BE=2x,在Rt△AEB中,根据勾股定理求出x,即可求出BE.
解答:(1)证明:连接AE,
∵C在BG的垂直平分线CF上(已知),
∴CB=CG,
∴∠1=∠2,
∵AB是⊙O的直径,
∴∠E=90°,
∴∠3+∠4=90°,
∵∠3=∠1=∠2,
∴∠2+∠4=90°,
AE
=
ED

∴∠ABE=∠4,
∴∠2+∠ABE=90°,
即∠ABC=90°,
∵OB是半径,
∴BC是⊙O的切线;

(2)解:∵BC是⊙O的切线,
∴∠ABC=90°,
由勾股定理,可得 AC=
82+62
=10,
∵CG=CB=6,
∴AG=10-6=4,
∵∠E=∠E,∠4=∠ABE,
∴△AEG∽△BEA,
AE
EB
=
AG
AB
=
4
8
=
1
2

设AE=x,BE=2x.
在Rt△AEB中,由勾股定理,可得 x2+(2x)2=82.解得:x=
8
5
5

∴BE=2x=
16
5
5
点评:本题考查了勾股定理、等腰三角形的性质、线段的垂直平分线、切线的判定、相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•平谷区二模)如图,在⊙O中,直径AB=6,∠CAB=40°,则阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)如图,?ABCD的一个外角∠DCE=70°,则∠A的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)下列等式成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)|-
3
|-2cos60°+(π-3)0-(
1
3
)-1

查看答案和解析>>

同步练习册答案