精英家教网 > 初中数学 > 题目详情
写出下列命题的逆命题,并判断逆命题的真假.
(1)如果∠α与∠β是邻补角,那么∠α+β=180°
 

(2)如果一个三角形的两个内角相等,那么这两个内角所对的边相等
 
考点:命题与定理
专题:
分析:(1)交换原命题中如果和那么后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;
(2)交换原命题中如果和那么后面的部分即可得到原命题的逆命题,然后根据等腰三角形的性质判断命题的真假.
解答:解:(1)逆命题为:如果∠α+β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;
(2)逆命题为:如果一个三角形的两个内角所对的边相等,那么这两个内角相等,此逆命题为真命题.
故答案为如果∠α+β=180°,那么∠α与∠β是邻补角;如果一个三角形的两个内角所对的边相等,那么这两个内角相等,
点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:
1
(-0.1)3
-
1
-0.22
+|(-2)3-3|-|-32-4|

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD内作等边△AED,连接BE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

用一副三角板能拼出的小于平角的最大角是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A、B的坐标分别为(1,3)和(2,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=AC,CD交AB于点E,∠BDC=∠BAC=α,连接AD.
(1)如图1,当α=60°,CD⊥AB时,求证:AD=BD=
1
2
CD;
(2)如图2,当α=60°,CD与AB不垂直时,请猜想线段AD、BD、CD之间的数量关系是
 
;(直接写出结果)
(3)如图3,当α≠60°,CD与AB不垂直时,请猜想线段AD、BD、CD之间的数量关系并证明你的猜想(用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,点C分线段AB为5:7两个部分(AC<BC),点D分AC为5:7的两个部分(AD<DC),且CD=5cm,则AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

a是不为1的有理数,我们把
1
1-a
称为a的差倒数,如:2的差倒数是
1
1-2
=-1
,-1的差倒数是
1
1-(-1)
=
1
2
,已知a1=
1
3
,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2015=(  )
A、
1
3
B、-2
C、
3
2
D、-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠BAC=45°,AH⊥BC于H(H在边BC上),若BH=1,CH=2,则AH=
 

查看答案和解析>>

同步练习册答案