精英家教网 > 初中数学 > 题目详情
20.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

分析 由旋转的特性以及∠MBN=60°,可知△BMN是等边三角形,从而得出MN=BN,再由点到直线的所有线段中,垂线段最短可得出结论.

解答 解:由旋转的特性可知,BM=BN,
又∵∠MBN=60°,
∴△BMN为等边三角形.
∴MN=BM,
∵点M是高CH所在直线上的一个动点,
∴当BM⊥CH时,MN最短(到直线的所有线段中,垂线段最短).
又∵△ABC为等边三角形,且AB=BC=CA=2,
∴当点M和点H重合时,MN最短,且有MN=BM=BH=$\frac{1}{2}$AB=1.
故选B.

点评 本题考查了旋转的特性、垂线段最短理论以及等边三角形的判定与性质,解题的关键是:由旋转的特性以及∠MBN=60°,可知△BMN是等边三角形,从而得出MN=BN,再结合点到直线的所有线段中,垂线段最短,即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有(  )
①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.用计算器计算(结果精确到0.001):
(1)$\sqrt{35}$≈5.916;
(2)$\sqrt{0.175}$≈0.418;
(3)$\sqrt{200}$≈14.142;
(4)$\sqrt{12345}$≈111.108.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y=x-2t与抛物线y=a(x-t)2+k(a>0,t≥0,a,t,k为已知数),在t=2时,直线刚好经过抛物线的顶点.
(1)求k的值.
(2)t由小变大时,两函数值之间大小不断发生改变,特别当t大于正数m时,无论自变量x取何值,y=x-2t的值总小于y=a(x-t)2+k的值,试求a与m的关系式.
(3)当0≤t<m时,设直线与抛物线的两个交点分别为A,B,在a为定值时,线段AB的长度是否存在最大值?若有,请求出相应的t的取值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知抛物线y=ax2+bx+c(a<0)经过点A(-3,0)、B(1,0),且与y轴交于点C,设抛物线的顶点为D.
(1)求点C、D的坐标(用含a的式子表示);
(2)当a变化时,△ACD能否为直角三角形?若能?求出所有符合条件的a的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,AB=CD,AD=BC,试判断AB与CD是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,如图AB⊥BD,CD⊥BD,∠A=∠C.求证:(1)AB=DC;(2)AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.正方形ABCD的对角线交于点O,AE是△ABC的角平分线,AE交BD于F,G为AB上一点,且BG=BE,
(1)求证:GE=EC;
(2)已知BE=2cm,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图所示,圆柱形玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是34cm.

查看答案和解析>>

同步练习册答案