精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.
(1)求证:△AOC≌△AOD;
(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.

【答案】分析:(1)要求证△AOC≌△AOD,已经满足的条件是OC=OD,AO=AO,根据HL定理就可以证出结论.
(2)求中阴影部分的面积,可以转化为△ABC的面积减去半圆的面积.
解答:(1)证明:∵AB切⊙O于D,
∴OD⊥AB,
∵Rt△ABC中,∠C=90°,
在Rt△AOC和Rt△AOD中,

∴Rt△AOC≌Rt△AOD(HL).

(2)解:设半径为r,在Rt△ODB中,
r2+32=(r+1)2,解得r=4;
由(1)有AC=AD,AB=AD+DB=AC+DB=AC+3,BC=BE+2r=1+8=9,
在直角三角形ABC中,
根据勾股定理得:AC2+92=(AC+3)2,解得AC=12,
∴S=AC•BC-πr2=×12×9-π×42=54-8π.
点评:本题主要考查了三角形全等的判定方法;注意:不规则图形的面积可以转化为规则图形的面积的差的问题来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案