精英家教网 > 初中数学 > 题目详情

给定一个正方形,将它分成大小和形状完全相同的四个部分,四名同学分别给出了分割方案:

甲:分别连结正方形两组对边的中点.

乙:作正方形的两条对角线.

丙:过其中心任作两条互相垂直的直线.

丁:作一条曲线连结正方形边上的任一点和其中心,再将这条曲线逆时针旋转90°、180°和270°,你认为他们都能达到要求吗?

如果能达到要求,请你按分割方案画出图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是
三角形一边长与该边上的高相等

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是
对角线互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使A与C重合,这时DE为折底,△CBE为等腰三角形,再将纸片沿△CBE的对称轴EF折叠,这时得到一个折叠而成的无缝隙、无重叠的矩形,这个矩形称为“折得矩形”.精英家教网
(1)如图②,正方形网格中的△ABC能折成“折得矩形”吗?,若能,请在图②中画出折痕;
(2)如图③,正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且由△ABC折成的“折得矩形”为正方形;
(3)如果一个三角形折成的“折得矩形”为正方形,那么它必须满足的条件是
 

(4)若一个四边形能折成“折得矩形”,那么它必须满足的条件是
 

查看答案和解析>>

同步练习册答案