精英家教网 > 初中数学 > 题目详情
如图,已知在平行四边形ABED中,AE是对角线,∠B=∠EAD,延长BE至点C,使EC=BE,并连接DC.
(1)求证:四边形ABCD是等腰梯形;
(2)若AB=AD=4,求梯形ABCD的面积.
证明:(1)∵四边形ABED是平行四边形,
∴AD=BE,ADBE,
∴∠EAD=∠AEB,
∵∠B=∠EAD,
∴∠AEB=∠B,
∴AB=AE,
∵EC=BE,AD=BE,
∴AD=EC,
∵ADBE,
∴ADEC,
∴四边形AECD是平行四边形,
∴AE=CD,
∵AE=AB,
∴AB=CD,
∵ADBC,
∴四边形ABCD是等腰梯形;

(2)∵AB=AD=4,AB=EC.AB=DC,
∴DC=4,=AB,BC=8,
过A作AF⊥BC于F,过D作DG⊥BC于G,
则∠AFB=∠AFE=∠DGC=90°,AFDG,
∵ADBC,
∴四边形AFGD是矩形,
∴AD=GF=4,AF=DG,
∵AB=CD,
∴由勾股定理得:BF=CG=2,
由勾股定理得:AF=
42-22
=2
3

∴梯形ABCD的面积是
1
2
×(4+8)×4=24.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=6,BC=8,AB=3
3
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图所示,梯形ABCD中,ABCD,且AB+CD=BC,M是AD的中点.
求证:BM⊥CM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

P、Q二人沿直角梯形ABCD道路晨练,如图,ADBC,∠B=90°,AD=240m,BC=270m,P从点A开始沿AD边向点D以1m/s的速度行走,Q从点C开始沿CB边向点B以3m/s的速度跑步.
(1)P、Q二人分别从A、C两点同时出发多少时间时,四边形PQCD(P、Q二人所在的位置为P、Q点)是平行四边形?
(2)添加一个什么条件时,P、Q二人分别从A、C两点同时出发,在某时刻四边形PQCD是菱形?说明理由.
(3)P、Q二人分别从A、C两点同时出发多少时间时,四边形PQCD是等腰梯形?
(4)若添加AB=50
23
m,P、Q二人分别从A、C两点同时出发多少时间时,△BPQ为等腰三角形?(第4小题只要求写出答案即可.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,梯形ABCD中,ADBC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,则DE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰梯形ABCD中,ADBC,ABDE,BC=8,AB=6,AD=5,则△CDE的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角梯形ABCD中,底AD=6cm,BC=11cm,腰CD=12cm,则这个直角梯形的周长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,BC⊥CD,∠B=60°,BC=2AD,E,F分别为AB、BC的中点.
(1)求证:四边形AFCD是矩形;
(2)当AD=3时,试求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

P、Q二人沿直角梯形ABCD道路晨练,如图,ADBC,∠B=90°,AD=240m,BC=270m,P从点A开始沿AD边向点D以1m/s的速度行走,Q从点C开始沿CB边向点B以3m/s的速度跑步.P、Q二人分别从A、C两点同时出发多少时间时,四边形PQCD(P、Q二人所在的位置为P、Q点)是平行四边形?

查看答案和解析>>

同步练习册答案