1£®ÎªÁËÅàÑøѧÉúµÄÐËȤ£¬ÎÒÊÐijСѧ¾ö¶¨ÔÙ¿ªÉèA£®Î赸£¬B£®ÒôÀÖ£¬C£®»æ»­£¬D£®Êé·¨ËĸöÐËȤ°à£¬ÎªÁ˽âѧÉú¶ÔÕâËĸöÏîÄ¿µÄÐËȤ°®ºÃ£¬Ëæ»ú³éÈ¡Á˲¿·ÖѧÉú½øÐе÷²é£¬²¢½«µ÷²é½á¹û»æÖƳÉÈçͼ1£¬2ËùʾµÄͳ¼Æͼ£¬ÇÒ½áºÏͼÖÐÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÔÚÕâ´Îµ÷²éÖУ¬¹²µ÷²éÁ˶àÉÙÃûѧÉú£¿
£¨2£©Ç뽫Á½·ùͳ¼Æͼ²¹³äÍêÕû£»
£¨3£©Èô±¾Ð£Ò»¹²ÓÐ2000ÃûѧÉú£¬Çë¹À¼Æϲ»¶¡°ÒôÀÖ¡±µÄÈËÊý£»
£¨4£©Èôµ÷²éµ½Ï²»¶¡°Êé·¨¡±µÄ4ÃûѧÉúÖÐÓÐ2ÃûÄÐÉú£¬2ÃûÅ®Éú£¬ÏÖ´ÓÕâ4ÃûѧÉúÖÐÈÎÒâ³éÈ¡2ÃûѧÉú£¬ÇëÓû­Ê÷״ͼ»òÁбíµÄ·½·¨£¬Çó³ö¸ÕºÃ³éµ½ÏàͬÐÔ±ðµÄѧÉúµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÓÃCÀàÈËÊý³ýÒÔËüËùÕ¼µÄ°Ù·Ö±È¼´¿ÉµÃµ½µ÷²éµÄ×ÜÈËÊý£»
£¨2£©ÏÈ·Ö±ð¼ÆËã³öBÀàÈËÊýºÍA¡¢BÁ½ÀàËùÕ¼µÄ°Ù·Ö±È£¬È»ºó²¹È«Í³¼Æͼ£»
£¨3£©ÀûÓÃÑù±¾¹À¼Æ×ÜÌ壬ÓÃÑù±¾ÖÐBÀàÈËÊýµÄ°Ù·Ö±È×÷ΪȫУϲ»¶¡°ÒôÀÖ¡±µÄÈËÊýµÄ°Ù·Ö±È£¬È»ºóÓô˰ٷֱȳËÒÔȫУÈËÊý¼´¿ÉµÃµ½È«Ð£Ï²»¶¡°ÒôÀÖ¡±µÄÈËÊý£»
£¨4£©ÏÈ»­Ê÷״ͼչʾËùÓÐ12ÖֵȿÉÄܵĽá¹ûÊý£¬ÔÙÕÒ³öÏàͬÐÔ±ðµÄѧÉúµÄ½á¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£®

½â´ð ½â£º£¨1£©120¡Â40%=300£¨Ãû£©£¬
ËùÒÔÔÚÕâ´Îµ÷²éÖУ¬¹²µ÷²éÁË300ÃûѧÉú£»
£¨2£©BÀàѧÉúÈËÊý=300-90-120-30=60£¨Ãû£©£¬
AÀàÈËÊýËùÕ¼°Ù·Ö±È=$\frac{90}{300}$¡Á100%=30%£»BÀàÈËÊýËùÕ¼°Ù·Ö±È=$\frac{60}{300}$¡Á100%=20%£»
ͳ¼ÆͼΪ£º

£¨3£©2000¡Á20%=400£¨ÈË£©£¬
ËùÒÔ¹À¼Æϲ»¶¡°ÒôÀÖ¡±µÄÈËÊýԼΪ400ÈË£»
£¨4£©»­Ê÷״ͼΪ£º

¹²ÓÐ12ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖÐÏàͬÐÔ±ðµÄѧÉúµÄ½á¹ûÊýΪ4£¬
ËùÒÔÏàͬÐÔ±ðµÄѧÉúµÄ¸ÅÂÊ=$\frac{4}{12}$=$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÀûÓÃÁÐ±í·¨ºÍÊ÷״ͼ·¨Õ¹Ê¾ËùÓпÉÄܵĽá¹ûÇó³ön£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬Çó³ö¸ÅÂÊ£®Ò²¿¼²éÁËͳ¼ÆͼºÍÓÃÑù±¾¹À¼Æ×ÜÌ壮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¯¼ò£ºxy2-2£¨a2b-xy2£©+£¨xy2-2a2b+3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¾Ýͳ¼Æ£¬2014ÄêºÓÄÏÊ¡ÂÃÓÎÒµ×ÜÊÕÈë´ïµ½4366ÒÚÔª£®Èô½«4366ÒÚÓÿÆѧ¼ÇÊý·¨±íʾΪ4.366¡Á10n£¬ÔònµÈÓÚ £¨¡¡¡¡£©
A£®10B£®11C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖª¡÷ABC£¬·Ö±ðÒÔAB£¬ACΪ±ß×÷Õý·½ÐÎABFGºÍÕý·½ÐÎACDE£¬Á¬½ÓBE£¬CG½»ÓÚµãO£¬Áª½áAO£¬P¡¢Q¡¢R¡¢T·Ö±ðÊÇBC¡¢BG¡¢EG¡¢CEµÄÖе㣮
£¨1£©ÇóÖ¤£ºAOƽ·Ö¡ÏEOG£»
£¨2£©ÅжÏËıßÐÎPQRTµÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬DΪ¡÷ABCÍâÒ»µã£¬ÇÒ¡ÏBDC=¡ÏBAC£¬BD½»ACÓÚO£¬AM¡ÍBDÓÚM
£¨1£©ÇóÖ¤£º¡Ï1=¡Ï2£»
£¨2£©ÇóÖ¤£ºADƽ·Ö¡ÏBDCµÄÍâ½Ç£»
£¨3£©Çó$\frac{BD-CD}{DM}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬°ë¾¶Îª2µÄ°ëÔ²OÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãP£¬TÊÇOBÉϵÄÒ»µã£¬OT=a£¨0£¼a£¼2£©£¬¹ýA×÷AC¡ÍAB£¬ÇÒAC=AT£¬Á¬½ÓCP²¢ÑÓ³¤½»°ëÔ²ÓÚÁíÒ»µãQ£¬ÇÒQǡΪ»¡PBÖе㣮
£¨1£©Ð´³öQµÄ×ø±ê£®
£¨2£©ÇóÖ±ÏßCPµÄ½âÎöʽ¼°aµÄÖµ£®
£¨3£©ÓɵãP·¢³öµÄ¹âÏߣ¬¾­¹ýTµÄ·´Éäºó£¬·´Éä¹âÏßÊÇ·ñͨ¹ýµãQ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬PÊǶԽÇÏßBDµÄÖе㣬E¡¢F·Ö±ðÊÇAB£¬CDµÄÖе㣬AD=BC£¬¡ÏPEF=10¡ã£¬Ôò¡ÏPFEµÄ¶ÈÊýÊÇ10¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®²»µÈʽ×é$\left\{\begin{array}{l}{\frac{1}{2}x+1£¾0}\\{1-x£¾0}\end{array}\right.$µÄ½â¼¯Îª-2£¼x£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½â·½³Ì£º
£¨1£©x2-4x-3=0£»                   
£¨2£©£¨x-3£©2+2x£¨x-3£©=0£»
£¨3£©£¨x-$\sqrt{2}$£©£¨x+$\sqrt{2}$£©=16£»         
£¨4£©£¨$\frac{1}{2}$x-1£©2=£¨x-1£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸