精英家教网 > 初中数学 > 题目详情

若点O到△ABC三边的距离都相等,则点O是△ABC的


  1. A.
    内心
  2. B.
    外心
  3. C.
    重心
  4. D.
    垂心
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mhm-n
.图(4)与图(6)中的等式有何关系.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•椒江区一模)我们把三角形内部的一个点到这个三角形三边所在直线距离的最小值叫做这个点到这个三角形的距离.如图1,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,如果PE≥PF≥PD,则称PD的长度为点P到△ABC的距离.如图2、图3,在平面直角坐标系中,已知A(6,0),B(0,8),连接AB.
(1)若P在图2中的坐标为(2,4),则P到OA的距离为
4
4
,P到OB的距离为
2
2
,P到AB的距离为
0.8
0.8
,所以P到△AOB的距离为
0.8
0.8

(2)若点Q是图2中△AOB的内切圆圆心,求点Q到△AOB距离的最大值;
(3)若点R是图3中△AOB内一点,且点R到△AOB的距离为1,请画出所有满足条件的点R所形成的封闭图形,并求出这个封闭图形的周长.(画图工具不限)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?

查看答案和解析>>

科目:初中数学 来源:69领航·单元同步训练 八年级(上册) 数学(人教版) 题型:059

如图,△ABC的∠B的外角平分线BD与∠C的外角平分线CE相交于点P.

(1)

在图中画出点P到△ABC三边的垂线段;

(2)

你认为点P是否在∠A的内角平分线上,若在,请说明理由.

查看答案和解析>>

同步练习册答案