精英家教网 > 初中数学 > 题目详情
如图1,一个无盖的正方体盒子的棱长为30厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙(盒壁的厚度忽略不计)
(1)假设昆虫甲在顶点C1处静止不动,如图1,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.昆虫乙如果沿路径A→E→Cl爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲(请简要说明画法).
(2)如图2,假设昆虫甲从顶点C1以a厘米/秒的速度在盒子的内部沿C1C向下爬行,同时昆虫乙从顶点A以2.5厘米/秒的速度在盒内壁沿A→F→G爬行,恰好在最短的时间内捕捉到昆虫甲.若最短时间为20秒,请你求出a的值.
分析:(1)当相邻两个面放在同一平面内时,过AC1的线段必过公共棱的中点,按此方法,可找棱A1B1的中点M,然后连接AM、MC1
(2)联系(1)中的方法,画出平面图形,利用勾股定理求得两点间的最短路线,进而求解a的值.
解答:解:(1)取棱A1B1的中点M,然后连接AM、MC1

(2)平面展开图如下:

由题意得:C1G=20a,CG=30-20a,DG=DC+CG=30+30-20a=60-20a,AG=2.5厘米/秒×20秒=50cm,
在RT△ADG中,AD2+DG2=AG2,即302+(60-20a)2=502
解得:a=1.
点评:此题考查了最短路径的问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决,注意平面展开图的分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将边长为6cm的正六边形纸板的六个角各剪切去一个全等的四边形,再沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面积和为
 
cm2.(结果精确到0.1cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•和平区二模)把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一个无盖的长方体盒子(纸板的厚度忽略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm2).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm2吗?若能,请求出此时x的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一个无盖的正五棱柱的盒子,有一只蚂蚁在F处发现一只虫子在外表面的D处,立刻赶去捕捉,你知道它怎样爬路线最短吗?

查看答案和解析>>

科目:初中数学 来源:2011届山东省枣庄市第15中学九年级第三次中考模拟考试数学 题型:填空题

如图,将边长为6cm的正六边形纸板的六个角各剪切去一个全等的四边形,再
沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面
积和为           cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一个无盖的长方体盒子(纸板的厚度忽略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm2).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm2吗?若能,请求出此时x的值,若不能,请说明理由.

查看答案和解析>>

同步练习册答案