【题目】已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=80°,∠BOC=40°,若OD平分∠AOC,则∠BOD的度数为________.
【答案】60°或20°
【解析】
根据题意可以得到存在两种情况,然后分别画出相应的图形,然后根据图形计算出相应的角的度数,本题得以解决.
由题意可得:分两种情况,
第一种情况如下图一所示,
∵∠AOB=80°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=80°﹣40°=40°.∵OD平分∠AOC,∴∠DOC=40°÷2=20°,∴∠BOD=∠BOC+∠DOC=40°+20°=60°.
第二种情况如下图二所示,
∵∠AOB=80°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=80°+40°=120°.∵OD平分∠AOC,∴∠DOC=120°÷2=60°,∴∠BOD=∠DOC-∠BOC =60°-40°=20°.
故答案为:60°或20°.
科目:初中数学 来源: 题型:
【题目】如图,已知点A是一次函数(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 , 点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )
A. ?
B. ?
C. ?
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列计算:
(1)78-23÷70=70÷70=1;
(2)12-7×(-4)+8÷(-2)=12+28-4=36;
(3)12÷(2×3)=12÷2×3=6×3=18;
(4)32×3.14+3×(-9.42)=3×9.42+3×(-9.42)=0.
其中错误的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P与点 Q 都在y轴上,且关于x轴对称.
(1)请画出△ABP 关于x轴的对称图形 (其中点 A 的对称点用 表示,点 的对称点用 表示);
(2)点P ,Q 同时都从y轴上的位置出发,分别沿l1,l2方向,以相同的速度向右运动,在运动过程中是否在某个位置使得 成立?若存在,请你在图中画出此时 PQ 的位置(用线段 表示),若不存在,请你说明理由(注:画图时,先用铅笔画好,再用钢笔描黑).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com