精英家教网 > 初中数学 > 题目详情

如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

(1)A(1,0),B(5,0),证明见解析
(2)△MDE能成为等腰直角三角形,此时点P坐标为(,3)
(3)能。此时点P坐标为()。

解析试题分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标。如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证。
中,令y=0,即﹣,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答图1所示,分别延长AD与EM,交于点F,

∵AD⊥PC,BE⊥PC,∴AD∥BE。∴∠MAF=∠MBE。
在△AMF与△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即点M为Rt△EDF斜边EF的中点。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M。如答图2所示,设直线PC与对称轴交于点N,证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P的坐标。
能。
,∴抛物线的对称轴是直线x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E必然在x轴上。
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意。
故此种情况不存在。
②若DE⊥DM,与①同理可知,此种情况不存在。
③若EM⊥DM,如答图2所示,

设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM与△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)。∴MN=MA。
∵M(3,0),MN=MA=2,∴N(3,2)。
设直线PC解析式为y=kx+b,
∵点N(3,2),C(0,﹣4)在抛物线上,
,解得
∴直线PC解析式为y=2x﹣4。
将y=2x﹣4代入抛物线解析式得: ,解得:x=0或x=
当x=0时,交点为点C;当x=时,y=2x﹣4=3。
∴P(,3)。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3)。
(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同:
如答题3所示,设对称轴与直线PC交于点N,

与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M。
∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN与△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)。∴MN=MB。∴N(3,﹣2)。
设直线PC解析式为y=kx+b,
∵点N(3,﹣2),C(0,﹣4)在抛物线上,
,解得
∴直线PC解析式为y=x﹣4。
将y=x﹣4代入抛物线解析式得:,解得:x=0或x=
当x=0时,交点为点C;当x=时,y=x﹣4=。∴P()。
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为()。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知二次函数的图像经过点(0,-4),且当x=2,有最大值—2。求该二次函数的关系式:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:

价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:     
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:

如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.

(1)求图象F所表示的抛物线的解析式:
(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.

(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案