精英家教网 > 初中数学 > 题目详情

数学家高斯在上小学的时候,就曾快速地计算出了从1~100的连续整数的和,全体同学及老师无不惊叹万分,你知道高斯使用的方法吗?

现在同学们在计算这100个数字之和的时候,实际上也经常采用高斯求和法,即1+2+3+…+99+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050,另外,也还有类似的计算为:1+2+3+…+98+99+100①倒过来写:100+99+98+…+3+2+1 ②

①+②得1+2+3+…+98+99+100=10100÷2=5050.

以上两种作法,显然都可以理解为对称位置上放置了这些数字,含其中的1和100,2和99,3和98,…为对称数字,则对称数字之和均为101,继而得出结论5050,通过上述数学式子的解释,请观察下图方阵中的数字,试计算这25个数字的和.

答案:
解析:

  方法1:5×5+10×10=125

  方法2:把方阵绕中心的5旋转180°,得到新的方阵,再与原方阵求和,则得到所有的数字都为10的方阵,即得


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=
n(n+1)
2

这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:
在“平方公式”(a+b)2=a2+2ab+b2中,
取b=1,得2a+1=(a+1)2-a2.…(*)
在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.
1+2+3+…+n=
n(n+1)
2
.现在请你利用“立方公式”(a+b)3=a3+3a2b+3ab2+b3来推导12+22+32+…+n2的计算公式,要求写出推算过程.注:可以利用已推导的公式1+2+3+…+n=
n(n+1)
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=
n(n+1)
2

这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:
在“平方公式”(a+b)2=a2+2ab+b2中,
取b=1,得2a+1=(a+1)2-a2.…(*)
在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.
1+2+3+…+n=
n(n+1)
2
.现在请你利用“立方公式”(a+b)3=a3+3a2b+3ab2+b3来推导12+22+32+…+n2的计算公式,要求写出推算过程.注:可以利用已推导的公式1+2+3+…+n=
n(n+1)
2

查看答案和解析>>

同步练习册答案