【题目】为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队每天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.
(1)求甲、乙两工程队每天分别铺设电路管道多少米;
(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?
【答案】(1)甲、乙两工程队每天分别铺设电路管道60米、40米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.
【解析】
(1)设乙队每天铺设电路管道米,根据两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天,列方程求解即可;
(2)设乙队施工天正好完成该项工程,根据甲队参与该项工程的施工时间不得超过20天,列不等式求解即可.
解:(1)设乙队每天铺设电路管道米,则甲队每天铺设电路管道米,
根据题意,得,
解得,
经检验,是所列方程的解,此时,,
答:甲、乙两工程队每天分别铺设电路管道60米、40米;
(2)设乙队施工天正好完成该项工程,
根据题意,得,
解得,
答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于A(-4,0)、B(2,0),在y轴上有一点 E(0,-2),连接AE.
(1)求二次函数的表达式;
(2)点D是第二象限内的抛物线上一动点.若tan∠AED=,求此时点D坐标;
(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A时,判断动点Q的轨迹并求动点Q所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a分别交x轴于A、B两点(点A在点B的侧),与y轴交于点C,连接AC,tan∠ACO=.
(1)如图l,求a的值;
(2)如图2,D是第一象限抛物线上的点,过点D作y轴的平行线交CB的延长线于点E,连接AE交BD于点F,AE=BD,求点D的坐标;
(3)如图3,在(2)的条件下,连接AD,P是第一象限抛物线上的点(点P与点D不重合),过点P作AD的垂线,垂足为Q,交x轴于点N,点M在x轴上(点M在点N的左侧),点G在NP的延长线上,MP=OG,∠MPN﹣∠MOG=45°,MN=10.点S是△AQN内一点,连接AS、QS、NS,AS=AQ,QS=SN,求QS的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于点,,与直线交于点,直线与轴交于点.
(1)求该抛物线的解析式.
(2)点是抛物线上第四象限上的一个动点,连接,,当的面积最大时,求点的坐标.
(3)将抛物线的对称轴向左平移3个长度单位得到直线,点是直线上一点,连接,,若直线上存在使最大的点,请直接写出满足条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法正确的是( )
A.小明做了次掷图钉的实验,发现次钉尖朝上,由此他说钉尖朝上的概率是
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.点都在反比例函数图象上,且则;
D.对于一元二元方程,若则方程的两个根互为相反数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国传染开来,与此同时医护人员一直坚守在抗击肺炎的前线,为我们保驾护航!罗曼罗兰说:“凡是行为善良与高尚的人,定能因之而担当患难.”他们是最可亲可敬的人!由此,医疗物资护目镜的需求量大大增加,两江新区某护目镜生 产厂家自正月初三起便要求全体员工提前返岗,在接到单位的返岗通知后,员工们都毫无怨言,快速回到了自己的工作岗位,用自己的实际行动践行着一份责任和担当.已知该厂拥有两条不同的护目镜加工生产线.原计划生产线每小时生产护目镜个,生产线每小时生产护目镜个.
(1)若生产线一共工作小时,且生产护目镜的总数量不少于个,则生产线至少生产护目镜多少小时?
(2)原计划生产线每天均工作小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,生产线每增加小时,该生产线每小时的产量将减少个,生产线每增加小时,该生产线每小时的产量将减少个.这样一天生产的护目镜将比原计划多个,求该厂实际每天生产护目镜的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】科技小组进行了机器人行走性实验,在实验场地有三点在同意笔直的赛道上,两点之间的距离是540m,甲、乙两机器人分别从两点出发,甲机器人匀速按的方向行走,乙机器人按方向行走,乙先出发1min,甲再出发,甲、乙离各自出发点的距离与乙出发的时间的函数关系式如图所示,结合图像回答下列问题:
(1)甲的速度是__________m/min;乙的速度是________m/min;
(2)求甲机器人从C点返回A点时与的函数关系式;
(3)乙机器人出发多长时间后两机器人相距80m.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com