精英家教网 > 初中数学 > 题目详情
为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值.
(1)过点E作EFBD,交AB的延长线于F点,
根据题意,四边形BDEF为矩形.
AF=AB+BF=5+1=6,EF=BD=8.
∴AE=
62+82
=10.
即AC+CE的最小值是10.
x2+1
+
(8-x)2+25
=10,
∵EFBD,
AB
AF
=
BC
EF

1
6
=
x
8

解得:x=
4
3


(2)过点A作AFBD,交DE的延长线于F点,
根据题意,四边形ABDF为矩形.
EF=AB+DE=2+3=5,AF=DB=12.
∴AE=
52+122
=13.
即AC+CE的最小值是13.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD的纸片中,AC⊥AB,AC与BD相交于O,将△ABC沿对角线AC翻转180°,得到△AB′C.
(1)求证:以A、C、D、B′为顶点的四边形是矩形;
(2)若四边形ABCD的面积S=12cm,求翻转后纸片部分的面积,即S△ACB

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,点E在AB上,现沿EC翻折,使点B刚好落在AD上的F点,若AB=3,BC=5.则折痕EC=(  )
A.
15
3
B.2
10
C.
5
3
10
D.
4
3
10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将长方形纸片ABCD折叠,使点B落在CD的中点E处,折痕为AF,CD=6,则△AEF的面积是(  )
A.6
3
B.4
3
C.4
2
D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与点A重合,折痕为DE,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的一个动点,过点P作PG⊥AB′于点G,作PH⊥DC于点H,试判断PG+PH的值是否为定值?若为定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处,若∠A=46°,有下列结论:①DEAB;②∠APD=46°;③∠ADP=88°;④△PEB是等腰三角形,正确的是______.(只需填写序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则点D到AB的距离=______.

查看答案和解析>>

同步练习册答案