精英家教网 > 初中数学 > 题目详情
(2007•衡阳)如图,Rt△AOB的斜边OA在y轴上,且OA=5,OB=4.将Rt△AOB绕原点O逆时针旋转一定的角度,使直角边OB落在x轴的负半轴上得到相应的Rt△A′OB′,则A′点的坐标是   
【答案】分析:根据旋转的性质“旋转不改变图形的大小和形状”解答.
解答:解:∵OA=5,OB=4,∠B=90°根据勾股定理可得AB=3,当OB落在x轴的负半轴时,点A旋转到第二象限,则A′B′⊥x轴,可得到OB′=OB=4,A′B′=AB=3,
∴A'点的坐标是(-4,3).
点评:需注意旋转前后线段的长度不变,第二象限点的符号为(-,+).
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=-2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.
(1)求点P,点C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=-2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=-2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.
(1)求点P,点C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=-2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=-2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.
(1)求点P,点C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=-2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年湖南省衡阳市中考数学试卷(解析版) 题型:解答题

(2007•衡阳)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=-2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.
(1)求点P,点C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=-2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年湖南省衡阳市中考数学试卷(解析版) 题型:选择题

(2007•衡阳)如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是( )

A.AD平分∠BAC
B.EF=BC
C.EF与AD互相平分
D.△DFE是△ABC的位似图形

查看答案和解析>>

同步练习册答案