精英家教网 > 初中数学 > 题目详情

如图,将边长为8数学公式的正方形OEFP置于直角坐标系中,OE、OP分别与x轴、y轴的正半轴重合.
(1)直接写出正方形OEFP的周长;
(2)等边△ABC的边长为数学公式,顶点A与坐标原点O重合,BC⊥x轴于点D,△ABC从点O出发,以每秒1个单位长的速度先向右平移,当BC边与直线EF重合时,继续以同样的速度向上平移,当点C与点F重合时,△ABC停止移动.设运动时间为t秒,△PAC的面积为y.①在△ABC向右平移的过程中,求y与t的函数关系式,并写出自变量t的取值范围;②当t为何值时,P、A、B三点在同一直线上(精确到0.1秒).

解:(1)∵边长为8的正方形OEFP置于直角坐标系中,OE、OP分别与x轴、y轴的正半轴重合.
∴正方形OEFP的周长为:4×8=32

(2)①连接PC,
∵等边△ABC的边长为,顶点A与坐标原点O重合,BC⊥x轴于点D,
∴AD=3,CD=,PA=8
y=S梯形PODC-S△POA-S△ADC=
0≤t≤-3;
②当A在OE上,∠BAE=∠PAO>45°,∠BAC>90°,不存在,
当P、A、B在同一直线上时(如图所示),Rt△PBF中,∠PBF=60°,
取PB的中点G,连接GF,则GF=PG=GB,
∴△BGF是等边三角形∴BF=0.5PB,
根据勾股定理可得:PB=16,BF=8,
又∵AD=3,
∴t=8-3+8-8+=17-11,
≈18.4(秒).
分析:(1)正方形的周长等于边长的4倍,即为32
(2)①连接PC,根据已知条件求出三角形ACD的面积,再用含有t的代数式分别表示出三角形POA和梯形POCD的面积,利用y=S梯形PODC-S△POA-S△ADC,即可求出y与t的函数关系式;
②当P、A、B在同一直线上时(如图所示),则Rt△PBF中,∠PBF=60°,取PB的中点G,连接GF,则GF=PG=GB,则三角形BGF为等边三角形,利用勾股定理求出PB、BF的值即可求出时间t.
点评:本题考查了正方形的性质、等边三角形的性质以及勾股定理的运用和分类讨论思想,题目综合性很强具有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将边长为6cm的正六边形纸板的六个角各剪切去一个全等的四边形,再沿虚线折起,做成一个无盖直六棱柱纸盒,使侧面积等于底面积,被剪去的六个四边形的面积和为
 
cm2.(结果精确到0.1cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )
精英家教网
A、
4+2
3
3
πa
B、
8+4
3
3
πa
C、
4+
3
3
πa
D、
4+2
3
6
πa

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰南区一模)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•惠城区模拟)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长为3的正六边形A1A2A3A4A5A6,在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )

查看答案和解析>>

同步练习册答案