精英家教网 > 初中数学 > 题目详情

已知:D是半圆O的直径AB上的一点,OD=数学公式OA,CD⊥AB,弧AC=弧CF,AF交CD于E,连OE,则tan∠DOE=


  1. A.
    数学公式
  2. B.
    2数学公式
  3. C.
    数学公式
  4. D.
    1
A
分析:连接AC,BC,根据圆周角定理及等角的余角相等得到∠ACE=∠ABC,从而可推出AE=CE,根据相交弦定理的推论,得OC的长,最后根据勾股定理求得DE的长,从而可求得tan∠DOE的值.
解答:解:连接AC,BC
∵∠CAE=∠ABC
∵∠ACE=∠ABC
∴∠CAE=∠ACE
∴AE=CE
设圆的半径是3,则OD=1,AD=2,DB=4,
∴CD===2
在直角三角形ADE中,设DE=x,则AE=CE=2-x,
由勾股定理,得AD2+DE2=AE2,即22+x2=(2-x)2
解得x=DE=
∴tan∠DOE=
故选A.
点评:此题综合运用了圆周角定理、相交弦定理的推论以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分数学公式的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年山东省潍坊市中考数学试卷(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

同步练习册答案