精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.

(1)求证:DF⊥AC;

(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;

(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再结合OB=OD可得出△OBD是等边三角形,根据弧长公式即可得出结论.

试题解析:(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.

∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.

(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系XOY中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)直接写出A′,B′,C′三点的坐标:A′( ),B′( ),C′(
(3)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了单价变化不完整的统计表及折线图.
A,B产品单价变化统计表

第一次

第二次

第三次

A产品单价(元/件)

6

5.2

6.5

B产品单价(元/件)

3.5

4

3

并求得了A产品三次单价的平均数和方差:
=5.9,SA2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=

(1)在折线图中画出B产品的单价变化的情况;
(2)求B产品三次单价的方差;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件的基础上调m%(m>0),但调价后不能超过4元/件,并且使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC在平面直角坐标系中,点ABC都在第一象限内,现将ABC的三个顶点的横坐标保持不变,纵坐标都乘-1,得到一个新的三角形,则( )。

A. 新三角形与ABC关于x轴对称 B. 新三角形与ABC关于y轴对称

C. 新三角形的三个顶点都在第三象限内 D. 新三角形是由ABC沿y轴向下平移一个单位长度得到的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=(2m﹣1)xm22 , 当x>0时,y随着x的增大而减小.
(1)求m的值;
(2)当1<x<4时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB等于(

A.22.5°
B.45°
C.30°
D.135°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为(
A.
B.
C.1
D.

查看答案和解析>>

同步练习册答案