精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点AD1cm/s的速度运动,到D点即停止.点Q自点CB2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?

【答案】8秒或10秒时,其中一个四边形是平行四边形.

【解析】试题分析:若四边形PDCQ或四边形APQB是平行四边形,那么QD=CQAP=BQPD=BQ,根据这个结论列出方程就可以求出时间.

试题解析:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24t,CQ=2t,BQ=302t.

(1)若四边形PDCQ是平行四边形,则PD=CQ,

24t=2t,

t=8,

8秒后四边形PDCQ是平行四边形;

(2)若四边形APQB是平行四边形,则AP=BQ,

t=302t,

t=10,

10秒后四边形APQB是平行四边形.

∴出发后8秒或10秒其中一个是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某种商品的标价为500/件,经过两次降价后的价格为320/件,并且两次降价的百分率相同.

1)求该种商品每次降价的百分率;

2)若该商品进价为280/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出这种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:

当n=2时,钉子板上所连不同线段的长度值只有1与所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;

当n=3时,钉子板上所连不同线段的长度值只有1, 2, 2五种,比n=2时增加了3种,即S=2+3=5.

(1)观察图形,填写下表:

钉子数(n×n)

S值

2×2

2

3×3

2+3

4×4

2+3+____

5×5

________

(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).

(3)对n×n的钉子板,写出用n表示S的代数式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,已知ADBCB=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EFDE,交直线AB于点F.

  (1)若点FB重合,求CE的长;(3分)

  (2)若点F在线段AB上,且AF=CE,求CE的长.(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;

(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?

(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形纸片ABCD中,.,则该纸片的面积为________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.

(1)如图①,当∠BOC=70°时,求∠DOE的度数;

(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.

(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图动点P在平面直角坐标系中按图中箭头所示方向运动1次从顶点运动到点11),2次接着运动到点20),3次接着运动到点32),按这样的运动规律经过第2010次运动后动点P的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

同步练习册答案