精英家教网 > 初中数学 > 题目详情
(2001•湖州)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.
(1)试写出α的四个三角函数值;
(2)若∠B=α,求BD的长?

【答案】分析:(1)根据勾股定理和锐角三角函数的概念来求解.
(2)由∠B=α,∠C=90°,得△ABC∽△DAC.再根据相似三角形中对应边成比例求解
解答:解:在Rt△ACD中,
∵AC=2,DC=1,
∴AD==
(1)sinα===,cosα===,tanα==,cotα==2.

(2)∵∠B=α,∠C=90°,
∴△ABC∽△DAC.
=
∴BC==4.
∴BD=BC-CD=4-1=3.
点评:考查综合应用解直角三角形、直角三角形性质和相似三角形的性质,进行逻辑推理能力和运算能力.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《锐角三角函数》(03)(解析版) 题型:解答题

(2001•湖州)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.
(1)试写出α的四个三角函数值;
(2)若∠B=α,求BD的长?

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2001•湖州)如图,已知E是平行四边形ABCD的边BC上的一点,F是BC延长线上一点,且BE=CF,BD与AE相交于点G.
求证:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2001•湖州)如图,已知E是平行四边形ABCD的边BC上的一点,F是BC延长线上一点,且BE=CF,BD与AE相交于点G.
求证:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:填空题

(2001•湖州)如图,已知ABCD是圆的内接四边形,对角线AC和BD相交于E,BC=CD=4,AE=6,如果线段BE和DE的长都是整数,则BD的长等于   

查看答案和解析>>

同步练习册答案