精英家教网 > 初中数学 > 题目详情
18.如图,任意画∠O,在∠O的两边上分别截取OA,OB,使OA=OB,过点A画OA的垂线,过点B画OB的垂线,设两条垂线相交于点P,点O在∠APB的平分线上吗?为什么?

分析 连接OP,通过Rt△AOP≌Rt△BOP,即可得到结论.

解答 解:连接OP,
∵PA⊥OA,PB⊥OB,
∴∠OAP=∠OBP=90°,
在Rt△AOP与Rt△BOP中,$\left\{\begin{array}{l}{OA=OB}\\{OP=OP}\end{array}\right.$,
∴Rt△AOP≌Rt△BOP,
∴∠AOP=∠BOP,
∴点O在∠APB的平分线上.

点评 本题考查了角平分线的判定,全等三角形的判定和性质,熟练掌握各定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知a与-1的差为2,b是-2的相反数,试求代数式$\frac{1}{ab}$+$\frac{1}{(a+1)(b+1)}$+$\frac{1}{(a+2)(b+2)}$+…+$\frac{1}{(a+2014)(b+2014)}$的值.(提示:a=1,b=2,$\frac{1}{ab}$=$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{(a+1)(b+1)}$=$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.当m=2-$\sqrt{3}$,n=$\sqrt{3}$+1,代数式$\sqrt{{m}^{2}}$+$\sqrt{1-2n+{n}^{2}}$的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在Rt△ABC中,∠C=90°,已知边BC、AC、AB的长分别为a、b、c,若a+b=14,c=10,则Rt△ABC的面积是24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.当抛物线y=ax2+k满足下列条件时,求函数解析式:
(1)过点(0,-3),(2,0)
(2)过点(1,1),(-2,7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)($\sqrt{\frac{8}{3}}-2\sqrt{\frac{5}{12}}$)-$\sqrt{\frac{4}{3}}$
(2)$\sqrt{45}+\sqrt{1\frac{1}{3}}+\sqrt{108}-\sqrt{125}$
(3)9$\sqrt{45}÷3\sqrt{\frac{1}{5}}×\frac{3}{2}\sqrt{2\frac{2}{3}}$
(4)(4$\sqrt{6}-4\sqrt{\frac{1}{2}}+3\sqrt{8}$)$÷2\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限内,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-5经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P,使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知$\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}$,则$\frac{(a+b)(b+c)(c+a)}{abc}$的值为(  )
A.8B.1C.-1或8D.-1或1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程组:
(1)$\left\{\begin{array}{l}{3x-y+2=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-y-10=0}\\{\frac{{x}^{2}}{25}-\frac{{y}^{2}}{5}=1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案