精英家教网 > 初中数学 > 题目详情
直线y=-x+7与y轴、x轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,顶点为C,直线AB与抛物线的对称轴交于点D.精英家教网
(1)求A、B坐标,并求抛物线的表达式;
(2)若点P以每秒1个单位长度的速度从点B沿x轴向点O运动,过P作PF∥CD交直线AB于点E,交抛物线于点F,设点P的运动时间为t秒.
①用含t的代数式表示线段EF的长;当t取何值时线段EF有最大值,求出这个最大值;
②是否存在这样的t值,使得四边形EFCD是平行四边形?若存在则求出t的值;若不存在,请说明理由.
分析:(1)利用直线的解析式可以求出A、B的坐标,利用A、B的坐标根据待定系数法就可以求出抛物线的解析式.
(2)①先表示出P点的坐标,利用P点的横坐标就可以求出E点F点的坐标,利用E、F的总坐标就可以表示出EF的长度.然后化为顶点式就可以求出其最大值.
②利用对称轴与AB的交点就可以求出D点的坐标,利用C、D的坐标就可以求出CD的长度,再代入EF的解析式就可以求出其t的值.
解答:解:(1)令x=0,则y=7,
∴A(0,7).
令y=0,则x=7,
∴B(7,0).
把(0,7),(7,0)代入抛物线的解析式为:
7=c
0=-49+7b+c

解得
b=6
c=7

∴抛物线的解析式为:y=-x2+6x+7;

(2)①设P(7-t,0).
∴F(7-t,-t2+8t),E(7-t,t),
∴EF=-t2+8t-t,
即EF=-t2+7t(0≤t≤7),
∵EF=-(t-
7
2
2+
49
4

∴当t=
7
2
时,EF有最大值
49
4

②抛物线y=-x2+6x+7的解析式变形为:
y=-(x-3)2+16,
∴顶点C(3,16).
当x=3时,y=-3+7,y=4,
∴D(3,4),
∴CD=12,
∴P点在对称轴的右侧.
∵四边形EFCD是平行四边形,
∴CD=EF=12
∴-t2+7t=12,
解得t=3或t=4(舍去)
∴满足条件t的值为3.
点评:本题考查了根据函数的解析式求交点坐标,根据点的坐标求函数的解析式,平行四边形的判定及性质等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线y=-2x+2分别与x轴、y轴交于A、B两点,以线段AB为直角边在第一象限精英家教网内作Rt△ABC,∠BAC=90°.
(1)求点A、B坐标;
(2)若AC=
12
AB,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在平面直角坐标系中,点B的坐标为(0,10),点P、Q同时从O点出发,在线段OB上做往返运动,点P往返一次需10s,点Q往返一次需6s.设动点P、Q运动的时间为x(s),动点离开原点的距离是y.
(1)当0≤x≤10时,画出点P,点Q的运动图象,并回答:
①点P从O点出发,1个往返之间与点Q相遇几次?(不包括O点)
②点P从O点出发,几秒后与点Q第一次相遇?
(2)如图②,在平面直角坐标系中,?OCDE的顶点C(6,0),D、E、B在同一直线上.分别过点P、Q作PM、QN垂直于y轴,P、Q为垂足.设运动过程中两条直线PM,QN与?OCDE围成图形(阴影部分)的面积是S,试求当x(0≤x≤5)为多少秒时,S有最大值,最大值是多少?
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=x+m与反比例函数y=
k
x
相交于点A(6,2),与x轴交于B点,点C在直线AB上且
AB
BC
=
2
3
精英家教网过B、C分别作y轴的平行线交双曲线y=
k
x
于D、E两点.
(1)求m、k的值;    
(2)求点D、E坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)直线y=-
1
2
x-1与反比例函数y=
k
x
(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)如图,在平面直角坐标系中,直线y=
1
2
x+
3
2
与直线y=x交于点A,点B在直线y=
1
2
x+
3
2
上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.
(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

查看答案和解析>>

同步练习册答案