精英家教网 > 初中数学 > 题目详情
(2002•济南)下列各组数中,相等的一组是( )
A.-1和-4+(-3)
B.|-3|和-(-3)
C.3-1和-3
D.-3和
【答案】分析:把四个选项逐一化简即可得出答案.
解答:解:A、错误,-4+(-3)=-7≠-1;
B、正确,|-3|=-(-3)=3;
C、错误,3-1=≠-3;
D、错误,=3≠-3.
故选B.
点评:本题考查的是绝对值的化简、负整数指数幂、算术平方根,比较简单.
解答此题要熟知,一个正数的绝对值是其本身,一个负数的绝对值是它的相反数,0的绝对值是0.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2002•济南)科学家通过实验探究出一定质量的某气体在体积不变的情况下,压强p(千帕)随温度t(℃)变化的函数关系式是P=kt+b,其图象是如图所示的射线AB.
(1)根据图象求出上述气体的压强p与温度t的函数关系式;
(2)求出当压强p为200千帕时,上述气体的温度.

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:解答题

(2002•济南)科学家通过实验探究出一定质量的某气体在体积不变的情况下,压强p(千帕)随温度t(℃)变化的函数关系式是P=kt+b,其图象是如图所示的射线AB.
(1)根据图象求出上述气体的压强p与温度t的函数关系式;
(2)求出当压强p为200千帕时,上述气体的温度.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《分式方程》(03)(解析版) 题型:解答题

(2002•济南)(1)在生活中需测量一些球的足球、篮球)的直径.某校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线DA、CB分别与球相切于点E、F,则EF即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm);





(2)有一特殊材料制成的质量为30克的泥块,现把它切开为大小两块,将较大泥块放在一架不等臂天平的左盘中,称得质量为27克;又将较小泥块放在该天平的右盘中,称得质量为8克.若只考虑该天平的臂长不等,其他因素忽略不计,请你依据杠杆的平衡原理,求出较大泥块和较小泥块的质量.

查看答案和解析>>

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:解答题

(2002•济南)如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法)
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
等分圆及扇形面的次数(n)1234n
所得扇形的总个数(S)47
(3)请你推断,能不能按上述操作过程,将原来的圆形纸板剪成33个扇形?为什么?

查看答案和解析>>

同步练习册答案