精英家教网 > 初中数学 > 题目详情

如图1,已知平行四边形PQRS是⊙O的内接四边形.
(1)求证:平行四边形PQRS是矩形.
(2)如图2,如果将题目中的⊙O改为边长为a的正方形ABCD,在AB、CD上分别取点P、S,连接PS,将Rt△SAP绕正方形中心O旋转180°得Rt△QCR,从而得四边形PQRS.试判断四边形RQRS能否变化成矩形?若能,设PA=x,SA=y,请说明x、y具有什么关系时,四边形PQRS是矩形;若不能,请说明理由.

(1)证明:∵平行四边形PQRS内接于⊙O,
∴∠Q+∠S=180°.
又∵∠Q=∠S,
∴∠Q=90°,
∴平行四边形PQRS是矩形.

(2)解:∵Rt△SAP与Rt△QCR关于点O对称,
∴QS与PR被O点平分,四边形PQRS为平行四边形.
若平行四边形PQRS变成矩形,不妨设∠QPS=90°.则∠BPQ+∠APS=90°.
又∵∠APS+∠ASP=90°,
∴∠BPQ=∠ASP,
∴△BPQ∽△ASP.
∴BP:BQ=AS:AP,
即 (a-x):(a-y)=y:x,
整理得(x-y)(x+y-a)=0,
∴x=y或x+y=a.
∴当x=y或x+y=a时,
可证得△BPQ∽△ASP,此时有∠QPS=90°,
从而得平行四边形PQRS是矩形.
分析:(1)只需证明有一内角为90°即可.根据圆内接四边形对角互补及平行四边形对角相等易得结论.
(2)根据中心对称的定义易知四边形PQRS为平行四边形;若是矩形,则必有内角为直角,不妨设∠QPS=90°,此时
需满足△BPQ∽△ASP.即当BP:BQ=AS:AP时,四边形PQRS为矩形.
点评:此题考查了矩形的判定方法及相似三角形的判定和性质,为开放探索型综合题,有一定难度.此类题常用分析法求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.
例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)已知平行四边形ABCD,请你在两个备用图中分别画出一个只有一对等高点的四边ABCE,其中E点分别在四边形ABCD的形内、形外(要求:画出必要的辅助线);
(2)如图2,P是四边形ABCD对角线BD上任意一点(不与B、D点重合),S1、S2、S3、S4分别表示△ABP、△CBP、△ADP、△CDP的面积.若四边形ABCD只有一对等高点A、C,S1、S2、S3、S4四者之间的等量关系如何?

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

如图所示,已知ABCD的对角线AC的垂直平分线与边ADBC分别交于点EF.求证:四边形AFCE是菱形.

小明的分析思路是:

EF垂直平分ACFAC=∠FCA;EAC=∠ECA

 

AEBC AC=∠FCA

FAC=∠ECAAFEC四边形AECF是平行四边形

                       

AE=EC

四边形AECF是菱形.

小刚的分析思路是

AEFCEAC=∠FCA

OA=OC   AOE≌△COF

     COF=∠AOE

OE=OF四边形AECF是平行四边行

                      四边形AECF是菱形。

               CAEF

你怎样评价小明与小刚的想法?从中选一个写出完整的证明过程。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形abcd

(1)写出平行四边形abcd四个顶点的坐标;

(2)画出平行四边形a1b1c1d1,使它与平行四边

abcd关于y轴对称.

(3)画出平行四边形a2b2c2d2,使平行四边形a2b2c2d2与平行四边形abcd关于点o

心对称.

 


查看答案和解析>>

同步练习册答案