精英家教网 > 初中数学 > 题目详情
16.某组数据-2,-1,0,1,2的方差为2.

分析 先由平均数的计算公式先求出这组数据的平均数,再根据方差公式进行计算即可.

解答 解:这组数据的平均数是:(-2-1+0+1+2)÷5=0,
则数据的方差S2=$\frac{1}{5}$[(-2)2+(-1)2+12+22]=2;
故答案为:2.

点评 本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.菱形的两条对角线的长分别为6cm与8cm,则菱形的周长为20cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).参考数据:sin23°=0.39,cos23°=0.92,tan23°=0.42.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,一次函数y=kx+3分别与x,y轴交于点N,M,与反比例函数y=$\frac{3}{x}$(x>0)的图象交于点A,若AM:MN=2:3,则k=$\frac{10}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24,这组数据的中位数是29.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在一个不透明的布袋中,装有三个小球,小球上分别标有数字“2”、“3”和“4”,它们除数字不同外没有任何区别,每次实验先搅拌均匀.
(1)从中任取一球,则摸出的球为“3”的概率是多少?
(2)从中任取一球,将球上的数字记为x,将此球放回盒中;再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示所有可能出现的结果,并求出x+y<5的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,二次函数y=$\frac{1}{2}$x2-2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+$\frac{\sqrt{2}}{2}$BH的值最小,求点H的坐标和GH+$\frac{\sqrt{2}}{2}$BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数y=$\frac{1}{2}$x2-2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知m2-3m=7,求代数式(2m+1)(m-1)-(m+1)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.当a=2016时,分式$\frac{{a}^{2}-4}{a-2}$的值是2018.

查看答案和解析>>

同步练习册答案