已知抛物线 a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
x | … | ―1 | 0 | 3 | … |
… | 0 | 0 | … |
解:(1)∵抛物线经过点(0,),∴c=。∴。
∵点(-1,0)、(3,0)在抛物线上,
∴,解得。
∴y1与x之间的函数关系式为:。
(2)∵,∴。
∴直线l为x=1,顶点M(1,3).
①由题意得,t≠3,
如图,记直线l与直线l′交于点C(1,t),
当点A′与点C不重合时,
∵由已知得,AM与BP互相垂直平分,
∴四边形ANMP为菱形。∴PA∥l。
又∵点P(x,y2),∴点A(x,t)(x≠1)。∴。
过点P作PQ⊥l于点Q,则点Q(1,y2),∴,。
在Rt△PQM中,∵,即。
整理得,,即。
当点A与点C重合时,点B与点P重合,
∴P(1,)。∴P点坐标也满足上式。
∴y2与x之间的函数关系式为(t≠3)。
②根据题意,借助函数图象:
当抛物线y2开口方向向上时,6-2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),
∵3>,∴不合题意。
当抛物线y2开口方向向下时,6-2t<0,即t>3时,
,
若3t-11≠0,要使y1<y2恒成立,只要抛物线开口方向向下,且顶点(1,)在x轴下方,
∵3-t<0,只要3t-11>0,解得t>,符合题意。
若3t-11=0,,即t=也符合题意。
综上所述,可以使y1<y2恒成立的t的取值范围是t≥。
解析试题分析:(1)先根据物线经过点(0, )得出c的值,再把点(-1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式。
(2)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.
①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以,过点P作PQ⊥l于点Q,则点Q(1,y2),故,,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式。
②据题意,借助函数图象:
当抛物线y2开口方向向上时,可知6-2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1, ),由于3>,所以不合题意。
当抛物线y2开口方向向下时,6-2t<0,即t>3时,求出的值。若3t--11≠0,要使y1<y2恒成立,只要抛物线方向向下及且顶点(1, )在x轴下方,因为3-t<0,只要3t-11>0,解得t>,符合题意;若3t-11=0,,即t=也符合题意。
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,).
(1)求抛物线的函数表达式;
(2)如图1,设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标.
(3)如图2,若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.
九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
鲜鱼销售单价(元/kg) | 20 |
单位捕捞成本(元/kg) | |
捕捞量(kg) | 950-10x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(12分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b= ,点B的横坐标为 (上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为
(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线抛物线(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为( , );
依此类推第n条抛物线yn的顶点坐标为( , );
所有抛物线的顶点坐标满足的函数关系是 ;
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An;
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com