A. | (2015,0) | B. | (2015,1) | C. | (2015,2) | D. | (2016,0) |
分析 设第n次到达的点为Pn点,根据点的变化找出变化规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,2)(n为自然数)”,由此即可得出结论.
解答 解:设第n次到达的点为Pn点,
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,2),P4(4,0),P5(5,1),…,
∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,2)(n为自然数).
∵2015=4×503+3,
∴P2015点的坐标为(4×503+3,2)=(2015,2).
故选C.
点评 本题考查了规律型中的点的坐标,解题的关键是找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,2)(n为自然数)”.本题属于中档题,难度不大,解决该题型题目时,根据点P的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 3$\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com