精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

【答案】分析:(1)由∠B=∠B,∠C=∠BMP=90°证明;
(2)勾股定理求出AB的长,相似三角形求出y与x的函数关系式,求出取值范围;
(3)根据内切圆的特点,求出x,y的值.
解答:(1)证明:∵AB切⊙P于点M,
∴∠PMB=∠C=90°.
又∵∠B=∠B,
∴△BPM∽△BAC.

(2)解:∵AC=3,BC=4,∠C=90°,
∴AB=5.


(0≤x<4).
当x>y时,⊙P与AC所在的直线相离.
即x>
得x>
∴当<x<4时,⊙P与AC所在的直线相离.

(3)解:设存在符合条件的⊙P.
得OP=2.5-y,而BM=
∴OM=


∴y1=0(不合题意舍去),y2=
时,x=
点评:本题涉及的知识点较多,综合考查了相似三角形的应用和待定系数法求一次函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=
k
x
(x>0)
的图象经过点A,若△BEC的面积为4,则k等于(  )
A、16B、8C、4D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的两直角边分别为1,2,以Rt△ABC的斜边AC为一直角边,另一直角边为1画第二个△ACD;在以△ACD的斜边AD为一直角边,另一直角边长为1画第三个△ADE;…,依此类推,第n个直角三角形的斜边长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的斜边AB=10cm,cosA=
35
,则BC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=
3
,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为
(4+
3
)π
(4+
3
)π
(结果用含有π的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC的一条直角边AB是⊙O的直径,AB=8,斜边交⊙O于D,∠A=30°,求阴影部分的面积.

查看答案和解析>>

同步练习册答案