精英家教网 > 初中数学 > 题目详情
(2011•三元区质检)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:
(1)OA=OB;
(2)∠OCD=∠ODC.
分析:(1)要证OA=OB,由等角对等边需证∠CAB=∠DBA,由已知△ABC≌△BAD即可证.
(2)由已知得AC=BD,由(1)可知OA=OB,所以OC=OD,可证∠OCD=∠ODC.
解答:证明:(1)∵△ABC≌△BAD,
∴∠CAB=∠DBA,
∴OA=OB.

(2)∵△ABC≌△BAD,
∴AC=BD,
又∵OA=OB,
∴AC-OA=BD-OB,
即:OC=OD,
∴∠OCD=∠ODC.
点评:本题考查了全等三角形的性质和等腰三角形的性质及平行线的性质.解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及内角之间的关系联系起来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•三元区质检)在Rt△ABC中,∠BAC=90°,AC=4,D为BC上的点,连接AD(如图).如果将△ACD沿直线AD翻折后,点C恰好落在边AB的中点处,那么点D到AB的距离是
8
3
8
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•三元区质检)(1)先简化,再求值:(a+3)2+3a(a-2),其中a=
1
2

(2)解不等式组
5x-1>2x+5
x-4≤3x+1
,并在所给的数轴上表示出其解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•三元区质检)如图甲,点C是线段AB的中点,DE⊥AC于点E,且DE=AE=EC,FC⊥CB于点G,且FG=CG=GB.
(1)求证:△DCF是等腰直角三角形;
(2)将图甲中的AC绕点C逆时针旋转一个锐角,点H是AB的中点,如图乙所示.求证:△DHF是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•三元区质检)如图甲,在平面直角坐标系中,抛物线y=ax2+bx-3a经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.
(1)求点D的坐标;
(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;
(3)若平行于x轴的直线与抛物线交于G、H两点,且GH为直径的圆与x轴相切,求这个圆半径的长;
(4)如图乙,P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.

查看答案和解析>>

同步练习册答案