精英家教网 > 初中数学 > 题目详情

若点C是AB的黄金分割点(AC>BC),若AB=4cm,则BC的长是   ____     

解析试题分析:根据点C是AB的黄金分割点(AC>BC),AB=4cm,结合黄金分割比求解即可.
∵点C是AB的黄金分割点(AC>BC),AB=4cm
.
考点:黄金分割比
点评:解题的关键是熟练掌握黄金分割比,同时要注意是哪两条线段的比为黄金分割比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
s1
s
=
s2
s1
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则精英家教网直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

1.研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?

2.请你说明:三角形的中线是否也是该三角形的黄金分割线?

3.研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.

4.如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.

 

查看答案和解析>>

科目:初中数学 来源:2011~2012学年江苏苏州八年级下期期末复习(一)数学试卷(带解析) 题型:解答题

如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.
【小题1】研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
【小题2】请你说明:三角形的中线是否也是该三角形的黄金分割线?
【小题3】研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.
【小题4】如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北黄石卷)数学(解析版) 题型:解答题

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

(1)如图2,在△ABC中,∠A=360°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;

(2)若△ABC在(1)的条件下,如图(3),请问直线CD是不是△ABC的黄金分割线,并证明你的结论;

(3)如图4,在直角梯形ABCD中,∠D=∠C=900,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

 

查看答案和解析>>

同步练习册答案