精英家教网 > 初中数学 > 题目详情
16.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732.

分析 过点A作AD⊥OB于D.先解Rt△AOD,得出AD的长度,再由△ABD是等腰直角三角形,得出BD=AD=2km,则易得AB、AD的长度;最后结合速度=路程÷时间解答问题.

解答 解:如图,过点A作AD⊥OB于D.
在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,
∴AD=$\frac{1}{2}$OA=2km.
在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
∴BD=AD=2km,
∴AB=$\sqrt{2}$AD=2$\sqrt{2}$km.
即该船航行的距离(即AB的长)为2$\sqrt{2}$km.
∴2$\sqrt{2}$÷$\frac{1}{12}$=24×1.414÷5≈34(km/h).
答:该船航行的速度约为34km/h.

点评 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.下列命题中,是真命题的是(  )
①两条直线被第三条直线所截,同位角相等;
②在同一平面内,垂直于同一直线的两条直线互相平行
③三角形的三条高中,必有一条在三角形的内部
④$\sqrt{-2}$是一个负数.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.某人沿坡度i=1:$\sqrt{3}$的坡面向上走50米,则此人离地面的高度为25米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如果不等式组$\left\{\begin{array}{l}{x>3}\\{x<m}\end{array}\right.$无解,那么m的取值范围是m≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,点O是平行四边形ABCD的对角线的交点,则图中全等三角形共有(  )
A.4对B.3对C.2对D.1对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.把命题“在同一平面内,平行于同一直线的两条直线互相平行”改写成“如果…那么…”的形式为:在同一平面内,如果两条直线平行于同一直线,那么这两条直线互相平行.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,?ABCD中,AB=4,BC=3,∠DCB=30°,动点E从B点出发,沿B-C-D-A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数图象用图象表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.?ABCD中,∠A=30°,AB边上的高为6,则BC的长为(  )
A.12B.6C.6$\sqrt{2}$D.6$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若代数式$\frac{1}{\sqrt{x-1}}$在实数范围内有意义,则x的取值范围是(  )
A.x>1B.x≥1C.x≠1D.x>0且x≠1

查看答案和解析>>

同步练习册答案